論文の概要: Community-Centric Graph Unlearning
- arxiv url: http://arxiv.org/abs/2408.09705v1
- Date: Mon, 19 Aug 2024 05:37:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-20 17:34:18.825349
- Title: Community-Centric Graph Unlearning
- Title(参考訳): コミュニティ中心グラフの学習
- Authors: Yi Li, Shichao Zhang, Guixian Zhang, Debo Cheng,
- Abstract要約: 我々は、新しいグラフ構造マッピング・アンラーニング・パラダイム(GSMU)と、それに基づく新しい手法CGE(Community-centric Graph Eraser)を提案する。
CGEは、コミュニティのサブグラフをノードにマッピングすることで、少ないマップ付きグラフ内でノードレベルの未学習操作の再構築を可能にする。
- 参考スコア(独自算出の注目度): 10.906555492206959
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Graph unlearning technology has become increasingly important since the advent of the `right to be forgotten' and the growing concerns about the privacy and security of artificial intelligence. Graph unlearning aims to quickly eliminate the effects of specific data on graph neural networks (GNNs). However, most existing deterministic graph unlearning frameworks follow a balanced partition-submodel training-aggregation paradigm, resulting in a lack of structural information between subgraph neighborhoods and redundant unlearning parameter calculations. To address this issue, we propose a novel Graph Structure Mapping Unlearning paradigm (GSMU) and a novel method based on it named Community-centric Graph Eraser (CGE). CGE maps community subgraphs to nodes, thereby enabling the reconstruction of a node-level unlearning operation within a reduced mapped graph. CGE makes the exponential reduction of both the amount of training data and the number of unlearning parameters. Extensive experiments conducted on five real-world datasets and three widely used GNN backbones have verified the high performance and efficiency of our CGE method, highlighting its potential in the field of graph unlearning.
- Abstract(参考訳): グラフアンラーニング技術は、‘忘れられる権利’の出現と、人工知能のプライバシとセキュリティに対する懸念の高まりから、ますます重要になっている。
グラフアンラーニングは、グラフニューラルネットワーク(GNN)における特定のデータの影響を迅速に排除することを目的としている。
しかし、既存の決定論的グラフアンラーニングフレームワークのほとんどは、バランスの取れた分割・サブモデルトレーニング・アグリゲーションパラダイムに従っており、結果としてサブグラフ近傍と冗長な未学習パラメータ計算の間の構造情報が欠如している。
この問題に対処するために、新しいグラフ構造マッピングアンラーニングパラダイム(GSMU)と、コミュニティ中心グラフ消去(CGE)という新しい手法を提案する。
CGEは、コミュニティのサブグラフをノードにマッピングすることで、少ないマップ付きグラフ内でノードレベルの未学習操作の再構築を可能にする。
CGEは、トレーニングデータの量と未学習パラメータの数の両方を指数関数的に削減する。
5つの実世界のデータセットと3つの広く使われているGNNバックボーンで実施された大規模な実験は、我々のCGE法の性能と効率を検証し、グラフアンラーニングの分野におけるその可能性を強調した。
関連論文リスト
- Loss-aware Curriculum Learning for Heterogeneous Graph Neural Networks [30.333265803394998]
異種グラフニューラルネットワーク(GNN)の性能向上のためのカリキュラム学習手法の適用について検討する。
データの品質をよりよく分類するために、データの全ノードの品質を測定するLTSと呼ばれる損失認識トレーニングスケジュールを設計する。
本研究は,複雑なグラフ構造データ解析のためのHGNNの能力向上のためのカリキュラム学習の有効性を示すものである。
論文 参考訳(メタデータ) (2024-02-29T05:44:41Z) - A Topology-aware Graph Coarsening Framework for Continual Graph Learning [8.136809136959302]
グラフに関する継続的な学習は、グラフデータがストリーミング形式で到着するグラフニューラルネットワーク(GNN)のトレーニングに対処する。
Experience Replayのような従来の継続的学習戦略は、ストリーミンググラフに適応することができる。
本稿では, TA$mathbbCO$, a (t)opology-(a)ware graph (co)arsening and (co)ntinual learning frameworkを提案する。
論文 参考訳(メタデータ) (2024-01-05T22:22:13Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - GIF: A General Graph Unlearning Strategy via Influence Function [63.52038638220563]
Graph Influence Function (GIF)は、削除されたデータにおける$epsilon$-massの摂動に応答してパラメータの変化を効率的に正確に推定できる、モデルに依存しない未学習の手法である。
我々は,4つの代表的GNNモデルと3つのベンチマークデータセットについて広範な実験を行い,未学習の有効性,モデルの有用性,未学習効率の観点からGIFの優位性を正当化する。
論文 参考訳(メタデータ) (2023-04-06T03:02:54Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
本稿では、観測されたグラフと潜伏グラフのグラフ畳み込み関係を提案し、グラフ学習タスクをネットワーク逆(デコンボリューション)問題として定式化する。
固有分解に基づくスペクトル法の代わりに、近似勾配反復をアンロール・トランケートして、グラフデコンボリューションネットワーク(GDN)と呼ばれるパラメータ化ニューラルネットワークアーキテクチャに到達させる。
GDNは、教師付き方式でグラフの分布を学習し、損失関数を適応させることでリンク予測やエッジウェイト回帰タスクを実行し、本質的に帰納的である。
論文 参考訳(メタデータ) (2022-05-19T14:08:15Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
本稿では,学習したグラフトポロジを外部ガイダンスなしでデータ自身で最適化する,教師なしグラフ構造学習パラダイムを提案する。
具体的には、元のデータから"アンカーグラフ"として学習目標を生成し、対照的な損失を用いてアンカーグラフと学習グラフとの一致を最大化する。
論文 参考訳(メタデータ) (2022-01-17T11:57:29Z) - Co-embedding of Nodes and Edges with Graph Neural Networks [13.020745622327894]
グラフ埋め込みは、高次元および非ユークリッド特徴空間でデータ構造を変換しエンコードする方法である。
CensNetは一般的なグラフ埋め込みフレームワークで、ノードとエッジの両方を潜在機能空間に埋め込む。
提案手法は,4つのグラフ学習課題における最先端のパフォーマンスを達成または一致させる。
論文 参考訳(メタデータ) (2020-10-25T22:39:31Z) - Iterative Deep Graph Learning for Graph Neural Networks: Better and
Robust Node Embeddings [53.58077686470096]
グラフ構造とグラフ埋め込みを協調的かつ反復的に学習するための、エンドツーエンドのグラフ学習フレームワーク、すなわち、IDGL(Iterative Deep Graph Learning)を提案する。
実験の結果,提案したIDGLモデルは,最先端のベースラインを一貫して上回る,あるいは一致させることができることがわかった。
論文 参考訳(メタデータ) (2020-06-21T19:49:15Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
グラフ表現学習は現実世界の問題に対処する強力な手法として登場した。
自己教師付きグラフニューラルネットワーク事前トレーニングフレームワークであるGraph Contrastive Codingを設計する。
3つのグラフ学習タスクと10のグラフデータセットについて実験を行った。
論文 参考訳(メタデータ) (2020-06-17T16:18:35Z) - Geom-GCN: Geometric Graph Convolutional Networks [15.783571061254847]
本稿では,この2つの弱点を克服するために,グラフニューラルネットワークのための新しい幾何集約手法を提案する。
提案したアグリゲーションスキームは置換不変であり、ノード埋め込み、構造近傍、二レベルアグリゲーションという3つのモジュールから構成される。
また,このスキームをGeom-GCNと呼ばれるグラフ畳み込みネットワークに実装し,グラフ上でトランスダクティブ学習を行う。
論文 参考訳(メタデータ) (2020-02-13T00:03:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。