JANA: Jointly Amortized Neural Approximation of Complex Bayesian Models
- URL: http://arxiv.org/abs/2302.09125v3
- Date: Tue, 20 Jun 2023 09:51:14 GMT
- Title: JANA: Jointly Amortized Neural Approximation of Complex Bayesian Models
- Authors: Stefan T. Radev, Marvin Schmitt, Valentin Pratz, Umberto Picchini,
Ullrich K\"othe, Paul-Christian B\"urkner
- Abstract summary: We propose jointly amortized neural approximation'' (JANA) of intractable likelihood functions and posterior densities.
We benchmark the fidelity of JANA on a variety of simulation models against state-of-the-art Bayesian methods.
- Score: 0.5872014229110214
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: This work proposes ``jointly amortized neural approximation'' (JANA) of
intractable likelihood functions and posterior densities arising in Bayesian
surrogate modeling and simulation-based inference. We train three complementary
networks in an end-to-end fashion: 1) a summary network to compress individual
data points, sets, or time series into informative embedding vectors; 2) a
posterior network to learn an amortized approximate posterior; and 3) a
likelihood network to learn an amortized approximate likelihood. Their
interaction opens a new route to amortized marginal likelihood and posterior
predictive estimation -- two important ingredients of Bayesian workflows that
are often too expensive for standard methods. We benchmark the fidelity of JANA
on a variety of simulation models against state-of-the-art Bayesian methods and
propose a powerful and interpretable diagnostic for joint calibration. In
addition, we investigate the ability of recurrent likelihood networks to
emulate complex time series models without resorting to hand-crafted summary
statistics.
Related papers
- Sub-graph Based Diffusion Model for Link Prediction [43.15741675617231]
Denoising Diffusion Probabilistic Models (DDPMs) represent a contemporary class of generative models with exceptional qualities.
We build a novel generative model for link prediction using a dedicated design to decompose the likelihood estimation process via the Bayesian formula.
Our proposed method presents numerous advantages: (1) transferability across datasets without retraining, (2) promising generalization on limited training data, and (3) robustness against graph adversarial attacks.
arXiv Detail & Related papers (2024-09-13T02:23:55Z) - A variational neural Bayes framework for inference on intractable posterior distributions [1.0801976288811024]
Posterior distributions of model parameters are efficiently obtained by feeding observed data into a trained neural network.
We show theoretically that our posteriors converge to the true posteriors in Kullback-Leibler divergence.
arXiv Detail & Related papers (2024-04-16T20:40:15Z) - BayesFlow: Amortized Bayesian Workflows With Neural Networks [0.0]
This manuscript introduces the Python library BayesFlow for simulation-based training of established neural network architectures for amortized data compression and inference.
Amortized Bayesian inference, as implemented in BayesFlow, enables users to train custom neural networks on model simulations and re-use these networks for any subsequent application of the models.
arXiv Detail & Related papers (2023-06-28T08:41:49Z) - Bayesian Neural Network Inference via Implicit Models and the Posterior
Predictive Distribution [0.8122270502556371]
We propose a novel approach to perform approximate Bayesian inference in complex models such as Bayesian neural networks.
The approach is more scalable to large data than Markov Chain Monte Carlo.
We see this being useful in applications such as surrogate and physics-based models.
arXiv Detail & Related papers (2022-09-06T02:43:19Z) - Probabilistic Modeling for Human Mesh Recovery [73.11532990173441]
This paper focuses on the problem of 3D human reconstruction from 2D evidence.
We recast the problem as learning a mapping from the input to a distribution of plausible 3D poses.
arXiv Detail & Related papers (2021-08-26T17:55:11Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
Simulation-based inference enables learning the parameters of a model even when its likelihood cannot be computed in practice.
One class of methods uses data simulated with different parameters to infer an amortized estimator for the likelihood-to-evidence ratio.
We show that this approach can be formulated in terms of mutual information between model parameters and simulated data.
arXiv Detail & Related papers (2021-06-03T12:59:16Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
We present a Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) model for robust estimation and anomaly detection of time series.
Our model parameterizes mean and variance for each time-stamp with flexible neural networks.
We show the effectiveness of our model on both synthetic datasets and public real-world benchmarks.
arXiv Detail & Related papers (2021-02-02T06:15:15Z) - A Bayesian Perspective on Training Speed and Model Selection [51.15664724311443]
We show that a measure of a model's training speed can be used to estimate its marginal likelihood.
We verify our results in model selection tasks for linear models and for the infinite-width limit of deep neural networks.
Our results suggest a promising new direction towards explaining why neural networks trained with gradient descent are biased towards functions that generalize well.
arXiv Detail & Related papers (2020-10-27T17:56:14Z) - Model Fusion with Kullback--Leibler Divergence [58.20269014662046]
We propose a method to fuse posterior distributions learned from heterogeneous datasets.
Our algorithm relies on a mean field assumption for both the fused model and the individual dataset posteriors.
arXiv Detail & Related papers (2020-07-13T03:27:45Z) - Amortized Bayesian Inference for Models of Cognition [0.1529342790344802]
Recent advances in simulation-based inference using specialized neural network architectures circumvent many previous problems of approximate Bayesian computation.
We provide a general introduction to amortized Bayesian parameter estimation and model comparison.
arXiv Detail & Related papers (2020-05-08T08:12:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.