Geometry, quantum correlations, and phase transitions in the
$\Lambda$-atomic configuration
- URL: http://arxiv.org/abs/2302.09204v1
- Date: Sat, 18 Feb 2023 01:34:10 GMT
- Title: Geometry, quantum correlations, and phase transitions in the
$\Lambda$-atomic configuration
- Authors: O. Casta\~nos, S. Cordero, R. L\'opez-Pe\~na, and E. Nahmad-Achar
- Abstract summary: The quantum phases are explained by emphasizing the spontaneous symmetry breaking along the separatrix.
The differences in purity and entanglement obtained in both calculations can be explained and visualised by means of this simplex representation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The quantum phase diagram for a finite $3$-level system in the $\Lambda$
configuration, interacting with a two-mode electromagnetic field in a cavity,
is determined by means of information measures such as fidelity, fidelity
susceptibility and entanglement, applied to the reduced density matrix of the
matter sector of the system. The quantum phases are explained by emphasizing
the spontaneous symmetry breaking along the separatrix. Additionally, a
description of the reduced density matrix of one atom in terms of a simplex
allows a geometric representation of the entanglement and purity properties of
the system. These concepts are calculated for both, the symmetry-adapted
variational coherent states and the numerical diagonalisation of the
Hamiltonian, and compared. The differences in purity and entanglement obtained
in both calculations can be explained and visualised by means of this simplex
representation.
Related papers
- Spontaneous polarized phase transitions and symmetry breaking of an ultracold atomic ensemble in a Raman-assisted cavity [9.354561963143967]
We investigate an ensemble consisting of $N$ four-level atoms within an optical cavity coupled to the single cavity mode and external laser fields.
Some novel phases characterized by the phase differences between the polarized cavity field or the atomic spin excitation and the Raman laser are found analytically.
It is found that besides the continuous $U(1)$ and discrete $mathbbZ$ symmetries, the system also exhibits two reflection symmetries $sigma_v$s, a central symmetry $C$ in the abstract position-momentum representation, and a discrete reflection-time symmetry
arXiv Detail & Related papers (2024-08-19T16:10:47Z) - A quantum eigenvalue solver based on tensor networks [0.0]
Electronic ground states are of central importance in chemical simulations, but have remained beyond the reach of efficient classical algorithms.
We introduce a hybrid quantum-classical eigenvalue solver that constructs a wavefunction ansatz from a linear combination of matrix product states in rotated orbital bases.
This study suggests a promising new avenue for scaling up simulations of strongly correlated chemical systems on near-term quantum hardware.
arXiv Detail & Related papers (2024-04-16T02:04:47Z) - Exact asymptotics of long-range quantum correlations in a nonequilibrium steady state [0.0]
We analytically study the scaling of quantum correlation measures on a one-dimensional containing a noninteracting impurity.
We derive the exact form of the subleading logarithmic corrections to the extensive terms of correlation measures.
This echoes the case of equilibrium states, where such logarithmic terms may convey universal information about the physical system.
arXiv Detail & Related papers (2023-10-25T18:00:48Z) - Quantifying measurement-induced quantum-to-classical crossover using an
open-system entanglement measure [49.1574468325115]
We study the entanglement of a single particle under continuous measurements.
We find that the entanglement at intermediate time scales shows the same qualitative behavior as a function of the measurement strength.
arXiv Detail & Related papers (2023-04-06T09:45:11Z) - Third quantization of open quantum systems: new dissipative symmetries
and connections to phase-space and Keldysh field theory formulations [77.34726150561087]
We reformulate the technique of third quantization in a way that explicitly connects all three methods.
We first show that our formulation reveals a fundamental dissipative symmetry present in all quadratic bosonic or fermionic Lindbladians.
For bosons, we then show that the Wigner function and the characteristic function can be thought of as ''wavefunctions'' of the density matrix.
arXiv Detail & Related papers (2023-02-27T18:56:40Z) - Order-invariant two-photon quantum correlations in PT-symmetric
interferometers [62.997667081978825]
Multiphoton correlations in linear photonic quantum networks are governed by matrix permanents.
We show that the overall multiphoton behavior of a network from its individual building blocks typically defies intuition.
Our results underline new ways in which quantum correlations may be preserved in counterintuitive ways even in small-scale non-Hermitian networks.
arXiv Detail & Related papers (2023-02-23T09:43:49Z) - Quantum correlations, entanglement spectrum and coherence of
two-particle reduced density matrix in the Extended Hubbard Model [62.997667081978825]
We study the ground state properties of the one-dimensional extended Hubbard model at half-filling.
In particular, in the superconducting region, we obtain that the entanglement spectrum signals a transition between a dominant singlet (SS) to triplet (TS) pairing ordering in the system.
arXiv Detail & Related papers (2021-10-29T21:02:24Z) - Geometric phase in a dissipative Jaynes-Cummings model: theoretical
explanation for resonance robustness [68.8204255655161]
We compute the geometric phases acquired in both unitary and dissipative Jaynes-Cummings models.
In the dissipative model, the non-unitary effects arise from the outflow of photons through the cavity walls.
We show the geometric phase is robust, exhibiting a vanishing correction under a non-unitary evolution.
arXiv Detail & Related papers (2021-10-27T15:27:54Z) - Exact solutions of interacting dissipative systems via weak symmetries [77.34726150561087]
We analytically diagonalize the Liouvillian of a class Markovian dissipative systems with arbitrary strong interactions or nonlinearity.
This enables an exact description of the full dynamics and dissipative spectrum.
Our method is applicable to a variety of other systems, and could provide a powerful new tool for the study of complex driven-dissipative quantum systems.
arXiv Detail & Related papers (2021-09-27T17:45:42Z) - Resolving Correlated States of Benzyne on a Quantum Computer with an
Error-Mitigated Quantum Contracted Eigenvalue Solver [0.0]
We show that a contraction of the Schr"odinger equation is solved for the two-electron reduced density matrix (2-RDM)
In contrast to the traditional variational quantum eigensolver, the contracted quantum eigensolver solves an integration (or contraction) of the many-electron Schr"odinger equation onto the two-electron space.
arXiv Detail & Related papers (2021-03-11T18:58:43Z) - Quantum Phase Diagrams of Matter-Field Hamiltonians I: Fidelity, Bures
Distance, and Entanglement [0.0]
A general procedure is established to calculate the quantum phase diagrams for finite matter-field Hamiltonian models.
The existence of a quantum phase diagram for a finite system can be established.
arXiv Detail & Related papers (2020-02-06T19:55:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.