OMINACS: Online ML-Based IoT Network Attack Detection and Classification
System
- URL: http://arxiv.org/abs/2302.09225v1
- Date: Sat, 18 Feb 2023 04:06:24 GMT
- Title: OMINACS: Online ML-Based IoT Network Attack Detection and Classification
System
- Authors: Diego Abreu, Ant\^onio Abel\'em
- Abstract summary: This paper proposes an online attack detection and network traffic classification system.
It combines stream Machine Learning, Deep Learning, and Ensemble Learning technique.
It can detect the presence of malicious traffic flows and classify them according to the type of attack they represent.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Several Machine Learning (ML) methodologies have been proposed to improve
security in Internet Of Things (IoT) networks and reduce the damage caused by
the action of malicious agents. However, detecting and classifying attacks with
high accuracy and precision is still a major challenge. This paper proposes an
online attack detection and network traffic classification system, which
combines stream Machine Learning, Deep Learning, and Ensemble Learning
technique. Using multiple stages of data analysis, the system can detect the
presence of malicious traffic flows and classify them according to the type of
attack they represent. Furthermore, we show how to implement this system both
in an IoT network and from an ML point of view. The system was evaluated in
three IoT network security datasets, in which it obtained accuracy and
precision above 90% with a reduced false alarm rate.
Related papers
- SCGNet-Stacked Convolution with Gated Recurrent Unit Network for Cyber Network Intrusion Detection and Intrusion Type Classification [0.0]
Intrusion detection systems (IDSs) are far from being able to quickly and efficiently identify complex and varied network attacks.
The SCGNet is a novel deep learning architecture that we propose in this study.
It exhibits promising results on the NSL-KDD dataset in both task, network attack detection, and attack type classification with 99.76% and 98.92% accuracy, respectively.
arXiv Detail & Related papers (2024-10-29T09:09:08Z) - Multiclass Classification Procedure for Detecting Attacks on MQTT-IoT
Protocol [0.0]
Intrusion detection systems (IDS) are used to protect IoT systems from the various anomalies and attacks at the network level.
Our work focuses on creating classification models that can feed an IDS using a dataset containing frames under attacks of an IoT system.
arXiv Detail & Related papers (2024-02-05T18:27:46Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - Constrained Twin Variational Auto-Encoder for Intrusion Detection in IoT
Systems [30.16714420093091]
Intrusion detection systems (IDSs) play a critical role in protecting billions of IoT devices from malicious attacks.
This article proposes a novel deep neural network/architecture called Constrained Twin Variational Auto-Encoder (CTVAE)
CTVAE can boost around 1% in terms of accuracy and Fscore in detection attack compared to the state-of-the-art machine learning and representation learning methods.
arXiv Detail & Related papers (2023-12-05T04:42:04Z) - Performance evaluation of Machine learning algorithms for Intrusion Detection System [0.40964539027092917]
This paper focuses on intrusion detection systems (IDSs) analysis using Machine Learning (ML) techniques.
We analyze the KDD CUP-'99' intrusion detection dataset used for training and validating ML models.
arXiv Detail & Related papers (2023-10-01T06:35:37Z) - Effective Intrusion Detection in Highly Imbalanced IoT Networks with
Lightweight S2CGAN-IDS [48.353590166168686]
Internet of Things (IoT) networks contain benign traffic far more than abnormal traffic, with some rare attacks.
Most existing studies have been focused on sacrificing the detection rate of the majority class in order to improve the detection rate of the minority class.
We propose a lightweight framework named S2CGAN-IDS to expand the number of minority categories in both data space and feature space.
arXiv Detail & Related papers (2023-06-06T14:19:23Z) - Unsupervised Ensemble Based Deep Learning Approach for Attack Detection
in IoT Network [0.0]
Internet of Things (IoT) has altered living by controlling devices/things over the Internet.
To bring down the IoT network, attackers can utilise these devices to conduct a variety of network attacks.
In this paper, we have developed an unsupervised ensemble learning model that is able to detect new or unknown attacks in an IoT network from an unlabelled dataset.
arXiv Detail & Related papers (2022-07-16T11:12:32Z) - NetSentry: A Deep Learning Approach to Detecting Incipient Large-scale
Network Attacks [9.194664029847019]
We show how to use Machine Learning for Network Intrusion Detection (NID) in a principled way.
We propose NetSentry, perhaps the first of its kind NIDS that builds on Bi-ALSTM, an original ensemble of sequential neural models.
We demonstrate F1 score gains above 33% over the state-of-the-art, as well as up to 3 times higher rates of detecting attacks such as XSS and web bruteforce.
arXiv Detail & Related papers (2022-02-20T17:41:02Z) - TANTRA: Timing-Based Adversarial Network Traffic Reshaping Attack [46.79557381882643]
We present TANTRA, a novel end-to-end Timing-based Adversarial Network Traffic Reshaping Attack.
Our evasion attack utilizes a long short-term memory (LSTM) deep neural network (DNN) which is trained to learn the time differences between the target network's benign packets.
TANTRA achieves an average success rate of 99.99% in network intrusion detection system evasion.
arXiv Detail & Related papers (2021-03-10T19:03:38Z) - Automated Identification of Vulnerable Devices in Networks using Traffic
Data and Deep Learning [30.536369182792516]
Device-type identification combined with data from vulnerability databases can pinpoint vulnerable IoT devices in a network.
We present and evaluate two deep learning approaches to the reliable IoT device-type identification.
arXiv Detail & Related papers (2021-02-16T14:49:34Z) - Security of Distributed Machine Learning: A Game-Theoretic Approach to
Design Secure DSVM [31.480769801354413]
This work aims to develop secure distributed algorithms to protect the learning from data poisoning and network attacks.
We establish a game-theoretic framework to capture the conflicting goals of a learner who uses distributed support vector machines (SVMs) and an attacker who is capable of modifying training data and labels.
The numerical results show that distributed SVM is prone to fail in different types of attacks, and their impact has a strong dependence on the network structure and attack capabilities.
arXiv Detail & Related papers (2020-03-08T18:54:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.