Approximation and Generalization Abilities of Score-based Neural Network Generative Models for Sub-Gaussian Distributions
- URL: http://arxiv.org/abs/2505.10880v1
- Date: Fri, 16 May 2025 05:38:28 GMT
- Title: Approximation and Generalization Abilities of Score-based Neural Network Generative Models for Sub-Gaussian Distributions
- Authors: Guoji Fu, Wee Sun Lee,
- Abstract summary: We study the approximation and abilities of score-based neural network generative models (SGMs)<n>Our framework is universal and can be used to establish convergence rates for SGMs under milder assumptions than previous work.<n>Our analysis removes several crucial assumptions, such as Lipschitz continuity of the score function or strictly positive lower bound on the target density.
- Score: 18.375250624200373
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper studies the approximation and generalization abilities of score-based neural network generative models (SGMs) in estimating an unknown distribution $P_0$ from $n$ i.i.d. observations in $d$ dimensions. Assuming merely that $P_0$ is $\alpha$-sub-Gaussian, we prove that for any time step $t \in [t_0, n^{O(1)}]$, where $t_0 \geq O(\alpha^2n^{-2/d}\log n)$, there exists a deep ReLU neural network with width $\leq O(\log^3n)$ and depth $\leq O(n^{3/d}\log_2n)$ that can approximate the scores with $\tilde{O}(n^{-1})$ mean square error and achieve a nearly optimal rate of $\tilde{O}(n^{-1}t_0^{-d/2})$ for score estimation, as measured by the score matching loss. Our framework is universal and can be used to establish convergence rates for SGMs under milder assumptions than previous work. For example, assuming further that the target density function $p_0$ lies in Sobolev or Besov classes, with an appropriately early stopping strategy, we demonstrate that neural network-based SGMs can attain nearly minimax convergence rates up to logarithmic factors. Our analysis removes several crucial assumptions, such as Lipschitz continuity of the score function or a strictly positive lower bound on the target density.
Related papers
- The Generative Leap: Sharp Sample Complexity for Efficiently Learning Gaussian Multi-Index Models [71.5283441529015]
In this work we consider generic Gaussian Multi-index models, in which the labels only depend on the (Gaussian) $d$-dimensional inputs through their projection onto a low-dimensional $r = O_d(1)$ subspace.<n>We introduce the generative leap exponent $kstar$, a natural extension of the generative exponent from [Damian et al.'24] to the multi-index setting.
arXiv Detail & Related papers (2025-06-05T18:34:56Z) - Neural network learns low-dimensional polynomials with SGD near the information-theoretic limit [75.4661041626338]
We study the problem of gradient descent learning of a single-index target function $f_*(boldsymbolx) = textstylesigma_*left(langleboldsymbolx,boldsymbolthetarangleright)$<n>We prove that a two-layer neural network optimized by an SGD-based algorithm learns $f_*$ with a complexity that is not governed by information exponents.
arXiv Detail & Related papers (2024-06-03T17:56:58Z) - Learning with Norm Constrained, Over-parameterized, Two-layer Neural Networks [54.177130905659155]
Recent studies show that a reproducing kernel Hilbert space (RKHS) is not a suitable space to model functions by neural networks.
In this paper, we study a suitable function space for over- parameterized two-layer neural networks with bounded norms.
arXiv Detail & Related papers (2024-04-29T15:04:07Z) - Matching the Statistical Query Lower Bound for $k$-Sparse Parity Problems with Sign Stochastic Gradient Descent [83.85536329832722]
We solve the $k$-sparse parity problem with sign gradient descent (SGD) on two-layer fully-connected neural networks.<n>We show that this approach can efficiently solve the $k$-sparse parity problem on a $d$-dimensional hypercube.<n>We then demonstrate how a trained neural network with sign SGD can effectively approximate this good network, solving the $k$-parity problem with small statistical errors.
arXiv Detail & Related papers (2024-04-18T17:57:53Z) - Minimax Optimality of Score-based Diffusion Models: Beyond the Density Lower Bound Assumptions [11.222970035173372]
kernel-based score estimator achieves an optimal mean square error of $widetildeOleft(n-1 t-fracd+22(tfracd2 vee 1)right)
We show that a kernel-based score estimator achieves an optimal mean square error of $widetildeOleft(n-1/2 t-fracd4right)$ upper bound for the total variation error of the distribution of the sample generated by the diffusion model under a mere sub-Gaussian
arXiv Detail & Related papers (2024-02-23T20:51:31Z) - Optimal score estimation via empirical Bayes smoothing [13.685846094715364]
We study the problem of estimating the score function of an unknown probability distribution $rho*$ from $n$ independent and identically distributed observations in $d$ dimensions.
We show that a regularized score estimator based on a Gaussian kernel attains this rate, shown optimal by a matching minimax lower bound.
arXiv Detail & Related papers (2024-02-12T16:17:40Z) - A Unified Framework for Uniform Signal Recovery in Nonlinear Generative
Compressed Sensing [68.80803866919123]
Under nonlinear measurements, most prior results are non-uniform, i.e., they hold with high probability for a fixed $mathbfx*$ rather than for all $mathbfx*$ simultaneously.
Our framework accommodates GCS with 1-bit/uniformly quantized observations and single index models as canonical examples.
We also develop a concentration inequality that produces tighter bounds for product processes whose index sets have low metric entropy.
arXiv Detail & Related papers (2023-09-25T17:54:19Z) - Generalization and Stability of Interpolating Neural Networks with
Minimal Width [37.908159361149835]
We investigate the generalization and optimization of shallow neural-networks trained by gradient in the interpolating regime.
We prove the training loss number minimizations $m=Omega(log4 (n))$ neurons and neurons $Tapprox n$.
With $m=Omega(log4 (n))$ neurons and $Tapprox n$, we bound the test loss training by $tildeO (1/)$.
arXiv Detail & Related papers (2023-02-18T05:06:15Z) - On the Multidimensional Random Subset Sum Problem [0.9007371440329465]
In the Random Subset Sum Problem, given $n$ i.i.d. random variables $X_1,..., X_n$, we wish to approximate any point $z in [-1,1]$ as the sum of a subset $X_i_1(z),..., X_i_s(z)$ of them, up to error $varepsilon cdot.
We prove that, in $d$ dimensions, $n = O(d3log frac 1varepsilon cdot
arXiv Detail & Related papers (2022-07-28T08:10:43Z) - Bounding the Width of Neural Networks via Coupled Initialization -- A
Worst Case Analysis [121.9821494461427]
We show how to significantly reduce the number of neurons required for two-layer ReLU networks.
We also prove new lower bounds that improve upon prior work, and that under certain assumptions, are best possible.
arXiv Detail & Related papers (2022-06-26T06:51:31Z) - Rates of convergence for density estimation with generative adversarial
networks [19.71040653379663]
We prove an oracle inequality for the Jensen-Shannon (JS) divergence between the underlying density $mathsfp*$ and the GAN estimate.
We show that the JS-divergence between the GAN estimate and $mathsfp*$ decays as fast as $(logn/n)2beta/ (2beta + d)$.
arXiv Detail & Related papers (2021-01-30T09:59:14Z) - Agnostic Learning of a Single Neuron with Gradient Descent [92.7662890047311]
We consider the problem of learning the best-fitting single neuron as measured by the expected square loss.
For the ReLU activation, our population risk guarantee is $O(mathsfOPT1/2)+epsilon$.
For the ReLU activation, our population risk guarantee is $O(mathsfOPT1/2)+epsilon$.
arXiv Detail & Related papers (2020-05-29T07:20:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.