論文の概要: Vulnerability analysis of captcha using Deep learning
- arxiv url: http://arxiv.org/abs/2302.09389v2
- Date: Wed, 20 Mar 2024 13:11:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-21 23:16:59.355864
- Title: Vulnerability analysis of captcha using Deep learning
- Title(参考訳): 深層学習を用いたCaptchaの脆弱性解析
- Authors: Jaskaran Singh Walia, Aryan Odugoudar,
- Abstract要約: 本研究ではCAPTCHA生成システムの欠陥と脆弱性について検討する。
これを実現するために、我々は畳み込みニューラルネットワークであるCapNetを開発した。
提案プラットフォームは,数値およびアルファ数値CAPTCHAの両方を評価することができる
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Several websites improve their security and avoid dangerous Internet attacks by implementing CAPTCHAs (Completely Automated Public Turing test to tell Computers and Humans Apart), a type of verification to identify whether the end-user is human or a robot. The most prevalent type of CAPTCHA is text-based, designed to be easily recognized by humans while being unsolvable towards machines or robots. However, as deep learning technology progresses, development of convolutional neural network (CNN) models that predict text-based CAPTCHAs becomes easier. The purpose of this research is to investigate the flaws and vulnerabilities in the CAPTCHA generating systems in order to design more resilient CAPTCHAs. To achieve this, we created CapNet, a Convolutional Neural Network. The proposed platform can evaluate both numerical and alphanumerical CAPTCHAs
- Abstract(参考訳): いくつかのウェブサイトはセキュリティを改善し、CAPTCHA(Completely Automated Public Turing Test to tell Computers and Humans Apart)を実装することで危険なインターネット攻撃を避ける。
最も一般的なCAPTCHAはテキストベースで、人間が容易に認識できるように設計されており、機械やロボットには解けない。
しかし、ディープラーニング技術の進歩に伴い、テキストベースのCAPTCHAを予測する畳み込みニューラルネットワーク(CNN)モデルの開発が容易になる。
本研究の目的は、CAPTCHA生成システムの欠陥と脆弱性を調査し、より弾力性のあるCAPTCHAを設計することである。
これを実現するために、我々は畳み込みニューラルネットワークであるCapNetを開発した。
提案プラットフォームは,数値およびアルファ数値CAPTCHAの両方を評価することができる
関連論文リスト
- LPAC: Learnable Perception-Action-Communication Loops with Applications
to Coverage Control [80.86089324742024]
本稿では,その問題に対する学習可能なパーセプション・アクション・コミュニケーション(LPAC)アーキテクチャを提案する。
CNNは局所認識を処理する。グラフニューラルネットワーク(GNN)はロボットのコミュニケーションを促進する。
評価の結果,LPACモデルは標準分散型および集中型カバレッジ制御アルゴリズムよりも優れていた。
論文 参考訳(メタデータ) (2024-01-10T00:08:00Z) - A Survey of Adversarial CAPTCHAs on its History, Classification and
Generation [69.36242543069123]
本稿では, 逆CAPTCHAの定義を拡張し, 逆CAPTCHAの分類法を提案する。
また, 敵CAPTCHAの防御に使用可能な防御方法も分析し, 敵CAPTCHAに対する潜在的な脅威を示す。
論文 参考訳(メタデータ) (2023-11-22T08:44:58Z) - EnSolver: Uncertainty-Aware Ensemble CAPTCHA Solvers with Theoretical Guarantees [1.9649272351760065]
本研究では, 深層アンサンブル不確実性を利用して分布外CAPTCHAを検出し, スキップする解法であるEnrを提案する。
我々は,解法の有効性に新たな理論的限界を証明し,その応用を最先端のCAPTCHA解法で実証する。
論文 参考訳(メタデータ) (2023-07-27T20:19:11Z) - Identification of Twitter Bots based on an Explainable ML Framework: the
US 2020 Elections Case Study [72.61531092316092]
本稿では,ラベル付きTwitterデータに基づくTwitterボット識別システムの設計に焦点をあてる。
Supervised Machine Learning (ML)フレームワークは、Extreme Gradient Boosting (XGBoost)アルゴリズムを用いて採用されている。
また、MLモデルの予測を説明するためにShapley Additive Explanations (SHAP)をデプロイした。
論文 参考訳(メタデータ) (2021-12-08T14:12:24Z) - The Feasibility and Inevitability of Stealth Attacks [63.14766152741211]
我々は、攻撃者が汎用人工知能システムにおける決定を制御できる新しい敵の摂動について研究する。
敵対的なデータ修正とは対照的に、ここで考慮する攻撃メカニズムには、AIシステム自体の変更が含まれる。
論文 参考訳(メタデータ) (2021-06-26T10:50:07Z) - Robust Text CAPTCHAs Using Adversarial Examples [129.29523847765952]
Robust Text CAPTCHA (RTC) という,ユーザフレンドリーなテキストベースのCAPTCHA生成法を提案する。
第1段階では、前景と背景はランダムにサンプルされたフォントと背景画像で構成される。
第2段階では、CAPTCHAの解法をより妨害するために、高転送可能な逆攻撃をテキストCAPTCHAに適用する。
論文 参考訳(メタデータ) (2021-01-07T11:03:07Z) - An End-to-End Attack on Text-based CAPTCHAs Based on Cycle-Consistent
Generative Adversarial Network [4.955311532191887]
本稿では,サイクル一貫性のある生成対向ネットワークをベースとした,効率的かつ簡便なエンドツーエンド攻撃手法を提案する。
いくつかの設定パラメータを変更するだけで、一般的なテキストベースのCAPTCHAスキームを攻撃できる。
提案手法は,10のWebサイトが展開するCAPTCHAスキームを効率的に分解する。
論文 参考訳(メタデータ) (2020-08-26T14:57:47Z) - Deep-CAPTCHA: a deep learning based CAPTCHA solver for vulnerability
assessment [1.027974860479791]
本研究では,CAPTCHAジェネレータシステムの弱点と脆弱性について検討する。
この目的を達成するために,Deep-CAPTCHAと呼ばれる畳み込みニューラルネットワークを開発した。
我々のネットワークのクラック精度は、数値およびアルファ数値テストデータセットの98.94%と98.31%のハイレートにつながる。
論文 参考訳(メタデータ) (2020-06-15T11:44:43Z) - Deceiving computers in Reverse Turing Test through Deep Learning [0.0]
現在、ほとんどのWebサイトやサービスプロバイダは、自分のWebサイトが自動化ボットによってクロールされているかどうかをチェックするプロセスを持っています。
本研究の目的は,CAPTCHAのテキストとして広く使用されているCAPTCHAのサブセットの使用が,人間の顧客を検証するための信頼性の高いプロセスであるかどうかを確認することである。
論文 参考訳(メタデータ) (2020-06-01T10:11:42Z) - Automating Botnet Detection with Graph Neural Networks [106.24877728212546]
ボットネットは、DDoS攻撃やスパムなど、多くのネットワーク攻撃の主要なソースとなっている。
本稿では,最新のディープラーニング技術を用いてボットネット検出のポリシーを自動学習するニューラルネットワーク設計の課題について考察する。
論文 参考訳(メタデータ) (2020-03-13T15:34:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。