論文の概要: Best of Both Worlds Policy Optimization
- arxiv url: http://arxiv.org/abs/2302.09408v1
- Date: Sat, 18 Feb 2023 19:46:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-21 18:46:36.774308
- Title: Best of Both Worlds Policy Optimization
- Title(参考訳): 世界の政策最適化のベスト
- Authors: Christoph Dann, Chen-Yu Wei, Julian Zimmert
- Abstract要約: 本稿では,正則化器,探索ボーナス,学習率を適切に設計することにより,損失が相反する場合には,より好意的なポリログ$(T)=後悔が得られることを示す。
政策最適化のために、ギャップ依存のポリログ$(T)$後悔境界が示されるのはこれが初めてである。
- 参考スコア(独自算出の注目度): 33.13041034490332
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Policy optimization methods are popular reinforcement learning algorithms in
practice. Recent works have built theoretical foundation for them by proving
$\sqrt{T}$ regret bounds even when the losses are adversarial. Such bounds are
tight in the worst case but often overly pessimistic. In this work, we show
that in tabular Markov decision processes (MDPs), by properly designing the
regularizer, the exploration bonus and the learning rates, one can achieve a
more favorable polylog$(T)$ regret when the losses are stochastic, without
sacrificing the worst-case guarantee in the adversarial regime. To our
knowledge, this is also the first time a gap-dependent polylog$(T)$ regret
bound is shown for policy optimization. Specifically, we achieve this by
leveraging a Tsallis entropy or a Shannon entropy regularizer in the policy
update. Then we show that under known transitions, we can further obtain a
first-order regret bound in the adversarial regime by leveraging the
log-barrier regularizer.
- Abstract(参考訳): ポリシー最適化手法は、実際に一般的な強化学習アルゴリズムである。
最近の研究は、損失が逆数であっても、$\sqrt{T}$ regret boundsを証明して理論的な基礎を築いた。
このような境界は最悪の場合厳密だが、しばしば過度に悲観的である。
本研究では,正則化器,探索ボーナス,学習率を適切に設計することにより,損失が確率的であれば,最悪の場合の保証を犠牲にすることなく,より好意的なポリログ$(T)$後悔を達成できることを示す。
我々の知る限り、政策最適化のためにギャップ依存ポリログ$(T)$後悔境界が示されるのはこれが初めてである。
具体的には、ポリシー更新において、TsallisエントロピーまたはShannonエントロピー正規化器を利用する。
次に、既知遷移の下では、対数バリア正規化器を利用することで、対数体制における一階の後悔関係をさらに得ることができることを示す。
関連論文リスト
- Near-Optimal Dynamic Regret for Adversarial Linear Mixture MDPs [63.47351876442425]
本研究は,完全情報フィードバックの下で,相変わらずの相変わらずの線形混合MDPについて検討した。
本稿では,占領率に基づく手法と政策に基づく手法の利点を組み合わせた新しいアルゴリズムを提案する。
我々のアルゴリズムは$widetildemathcalO(d sqrtH3 K + sqrtHK(H + barP_K$)$ dynamic regret, ここで$d$は特徴次元である。
論文 参考訳(メタデータ) (2024-11-05T13:55:52Z) - Off-Policy Primal-Dual Safe Reinforcement Learning [16.918188277722503]
本研究では, 累積コスト推定における誤差が, 法外手法を用いた場合のコストの大幅な過小評価を引き起こすことを示す。
本稿では,予測の不確実性を考慮し,制約充足領域の政策を学習する保守的な政策最適化を提案する。
次に,評価の不確実性を徐々に減少させることにより,そのような過小評価の解消を支援するために,局所的な政策凸化を導入する。
論文 参考訳(メタデータ) (2024-01-26T10:33:38Z) - Revisiting Weighted Strategy for Non-stationary Parametric Bandits [82.1942459195896]
本稿では,非定常パラメトリックバンディットの重み付け戦略を再考する。
より単純な重みに基づくアルゴリズムを生成する改良された分析フレームワークを提案する。
我々の新しいフレームワークは、他のパラメトリックバンディットの後悔の限界を改善するのに使える。
論文 参考訳(メタデータ) (2023-03-05T15:11:14Z) - Complete Policy Regret Bounds for Tallying Bandits [51.039677652803675]
政策後悔は、適応的な敵に対してオンライン学習アルゴリズムのパフォーマンスを測定するという、よく確立された概念である。
我々は,不完全な政策後悔を効果的に最小化できる敵の制限について検討する。
我々は、$tildemathcalO(mKsqrtT)$の完全なポリシーを後悔するアルゴリズムを提供し、$tildemathcalO$表記は対数要素だけを隠す。
論文 参考訳(メタデータ) (2022-04-24T03:10:27Z) - The Best of Both Worlds: Reinforcement Learning with Logarithmic Regret
and Policy Switches [84.54669549718075]
漸進的強化学習(RL)における後悔の最小化問題について検討する。
一般関数クラスと一般モデルクラスで学ぶことに集中する。
対数的後悔境界は$O(log T)$スイッチングコストのアルゴリズムによって実現可能であることを示す。
論文 参考訳(メタデータ) (2022-03-03T02:55:55Z) - The best of both worlds: stochastic and adversarial episodic MDPs with
unknown transition [49.78053380710322]
我々は,エピソードT$でマルコフ決定過程を学習する上で,両世界の最良の問題を考える。
最近の[Jin and Luo, 2020]による研究は、固定遷移が分かっているときにこの目標を達成する。
本研究では,同じFollow-the-Regularized-Leader(textFTRL$)フレームワークを新しいテクニックのセットと組み合わせることで,この問題を解決する。
論文 参考訳(メタデータ) (2021-06-08T05:46:35Z) - Improved Regret Bound and Experience Replay in Regularized Policy
Iteration [22.621710838468097]
無限ホライゾンマルコフ決定過程(mdps)における学習アルゴリズムを関数近似を用いて検討する。
まず、ほぼ同一の仮定の下で、Politexアルゴリズムの後悔解析を$O(T3/4)$から$O(sqrtT)$にシャープできることを示す。
その結果、計算効率の良いアルゴリズムに対して、最初の高い確率の$o(sqrtt)$ regretバウンドが得られる。
論文 参考訳(メタデータ) (2021-02-25T00:55:07Z) - Robust Policy Gradient against Strong Data Corruption [30.910088777897045]
対人汚職下での堅牢な強化学習の課題を報酬と移行の両面から検討する。
攻撃モデルでは、エピソード内の各ステップで報酬と移行を任意に破壊できるテクティタダプティブな敵を仮定する。
我々はフィルタポリシグラディエントアルゴリズムを開発し、汚職に対する報酬を許容し、$O(epsilon1/4)$-optimal Policy を見つけることができる。
論文 参考訳(メタデータ) (2021-02-11T01:48:38Z) - Optimistic Policy Optimization with Bandit Feedback [70.75568142146493]
我々は,事前の報奨を後悔する$tilde O(sqrtS2 A H4 K)を定め,楽観的な信頼領域ポリシー最適化(TRPO)アルゴリズムを提案する。
我々の知る限り、この2つの結果は、未知の遷移と帯域幅フィードバックを持つポリシー最適化アルゴリズムにおいて得られた最初のサブ線形後悔境界である。
論文 参考訳(メタデータ) (2020-02-19T15:41:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。