論文の概要: Near-Optimal Dynamic Regret for Adversarial Linear Mixture MDPs
- arxiv url: http://arxiv.org/abs/2411.03107v1
- Date: Tue, 05 Nov 2024 13:55:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-06 15:01:23.207018
- Title: Near-Optimal Dynamic Regret for Adversarial Linear Mixture MDPs
- Title(参考訳): 逆線形混合MDPの準最適動的レグレット
- Authors: Long-Fei Li, Peng Zhao, Zhi-Hua Zhou,
- Abstract要約: 本研究は,完全情報フィードバックの下で,相変わらずの相変わらずの線形混合MDPについて検討した。
本稿では,占領率に基づく手法と政策に基づく手法の利点を組み合わせた新しいアルゴリズムを提案する。
我々のアルゴリズムは$widetildemathcalO(d sqrtH3 K + sqrtHK(H + barP_K$)$ dynamic regret, ここで$d$は特徴次元である。
- 参考スコア(独自算出の注目度): 63.47351876442425
- License:
- Abstract: We study episodic linear mixture MDPs with the unknown transition and adversarial rewards under full-information feedback, employing dynamic regret as the performance measure. We start with in-depth analyses of the strengths and limitations of the two most popular methods: occupancy-measure-based and policy-based methods. We observe that while the occupancy-measure-based method is effective in addressing non-stationary environments, it encounters difficulties with the unknown transition. In contrast, the policy-based method can deal with the unknown transition effectively but faces challenges in handling non-stationary environments. Building on this, we propose a novel algorithm that combines the benefits of both methods. Specifically, it employs (i) an occupancy-measure-based global optimization with a two-layer structure to handle non-stationary environments; and (ii) a policy-based variance-aware value-targeted regression to tackle the unknown transition. We bridge these two parts by a novel conversion. Our algorithm enjoys an $\widetilde{\mathcal{O}}(d \sqrt{H^3 K} + \sqrt{HK(H + \bar{P}_K)})$ dynamic regret, where $d$ is the feature dimension, $H$ is the episode length, $K$ is the number of episodes, $\bar{P}_K$ is the non-stationarity measure. We show it is minimax optimal up to logarithmic factors by establishing a matching lower bound. To the best of our knowledge, this is the first work that achieves near-optimal dynamic regret for adversarial linear mixture MDPs with the unknown transition without prior knowledge of the non-stationarity measure.
- Abstract(参考訳): 本研究は, 実測値として動的後悔を応用した, 情報フィードバックの下で, 未知の遷移と敵対的報酬を伴うエピソード線形混合MDPについて検討した。
まず、最も一般的な2つの方法の長所と短所を詳細に分析することから始める。
本手法は,非定常環境に対処する上で有効であるが,未知の遷移に苦慮している。
対照的に、ポリシーベースの手法は、未知の遷移を効果的に扱うことができるが、非定常環境を扱う際の課題に直面している。
これに基づいて,両手法の利点を組み合わせた新しいアルゴリズムを提案する。
具体的には
(i)非定常環境を扱うための2層構造を有する占有対策に基づくグローバルな最適化
(II) 未知の遷移に対処するため、ポリシーに基づく分散対応価値目標回帰。
これら2つの部分を新しい変換でブリッジする。
我々のアルゴリズムは$\widetilde{\mathcal{O}}(d \sqrt{H^3 K} + \sqrt{HK(H + \bar{P}_K)})$ dynamic regret, where $d$ is the feature dimension, $H$ is the episode length, $K$ is the number of episodes, $\bar{P}_K$ is the non-stationarity measure。
一致した下界を確立することにより、対数的因子に対して最小値が最適であることを示す。
我々の知る限りでは、非定常度尺度の事前知識がなければ、逆線形混合MDPと未知の遷移とをほぼ最適な動的後悔を達成できる最初の研究である。
関連論文リスト
- Narrowing the Gap between Adversarial and Stochastic MDPs via Policy Optimization [11.11876897168701]
本稿では,次数$tildemathcalO(mathrmpoly(H)sqrtSAT)$の残差を求めるアルゴリズムを提案する。
提案したアルゴリズムと分析は、占有対策によって与えられる典型的なツールを完全に回避する。
論文 参考訳(メタデータ) (2024-07-08T08:06:45Z) - Improved Algorithm for Adversarial Linear Mixture MDPs with Bandit
Feedback and Unknown Transition [71.33787410075577]
線形関数近似,未知遷移,および逆損失を用いた強化学習について検討した。
我々は高い確率で$widetildeO(dsqrtHS3K + sqrtHSAK)$ regretを実現する新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-03-07T15:03:50Z) - Learning Adversarial Low-rank Markov Decision Processes with Unknown
Transition and Full-information Feedback [30.23951525723659]
本研究は,全情報フィードバック設定において,逆向きに損失が変化する低ランクMDPについて検討する。
政策最適化に基づくアルゴリズムPOLOを提案し、$widetildeO(Kfrac56Afrac12dln (1+M)/ (1-gamma)2)$ regret guarantee。
論文 参考訳(メタデータ) (2023-11-14T03:12:43Z) - First-order Policy Optimization for Robust Markov Decision Process [40.2022466644885]
我々はロバストマルコフ決定過程(MDP)の解法を考える。
MDPは、不確実な遷移カーネルを持つ割引状態、有限状態、有限作用空間 MDP の集合を含む。
$(mathbfs,mathbfa)$-矩形不確かさ集合に対して、ロバストな目的に関するいくつかの構造的な観察を確立する。
論文 参考訳(メタデータ) (2022-09-21T18:10:28Z) - Softmax Policy Gradient Methods Can Take Exponential Time to Converge [60.98700344526674]
Softmax Policy gradient(PG)メソッドは、現代の強化学習におけるポリシー最適化の事実上の実装の1つです。
ソフトマックス PG 法は、$mathcalS|$ および $frac11-gamma$ の観点から指数時間で収束できることを実証する。
論文 参考訳(メタデータ) (2021-02-22T18:56:26Z) - Online Apprenticeship Learning [58.45089581278177]
見習い学習(AL)では、コスト関数にアクセスせずにマルコフ決定プロセス(MDP)が与えられます。
目標は、事前に定義されたコスト関数のセットで専門家のパフォーマンスに一致するポリシーを見つけることです。
ミラー下降型ノンレグレットアルゴリズムを2つ組み合わせることで,OAL問題を効果的に解くことができることを示す。
論文 参考訳(メタデータ) (2021-02-13T12:57:51Z) - Efficient Learning in Non-Stationary Linear Markov Decision Processes [17.296084954104415]
非定常線形(低ランク)マルコフ決定過程(MDP)におけるエピソード強化学習の研究
OPT-WLSVI は最小二乗の重み付け値に基づく楽観的なモデルフリーのアルゴリズムであり、指数重み付けを用いて過去のデータをスムーズに忘れる。
我々のアルゴリズムは、各時点で最高のポリシーと競合するときに、$d$$$widetildemathcalO(d5/4H2 Delta1/4 K3/4)$で上限付けられた後悔を実現する。
論文 参考訳(メタデータ) (2020-10-24T11:02:45Z) - Provably Efficient Safe Exploration via Primal-Dual Policy Optimization [105.7510838453122]
制約付きマルコフ決定過程(CMDP)を用いた安全強化学習(SRL)問題について検討する。
本稿では,関数近似設定において,安全な探索を行うCMDPの効率の良いオンラインポリシー最適化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-03-01T17:47:03Z) - Optimistic Policy Optimization with Bandit Feedback [70.75568142146493]
我々は,事前の報奨を後悔する$tilde O(sqrtS2 A H4 K)を定め,楽観的な信頼領域ポリシー最適化(TRPO)アルゴリズムを提案する。
我々の知る限り、この2つの結果は、未知の遷移と帯域幅フィードバックを持つポリシー最適化アルゴリズムにおいて得られた最初のサブ線形後悔境界である。
論文 参考訳(メタデータ) (2020-02-19T15:41:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。