論文の概要: Estimating Treatment Effects in Continuous Time with Hidden Confounders
- arxiv url: http://arxiv.org/abs/2302.09446v2
- Date: Tue, 21 Feb 2023 02:00:16 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-22 11:42:21.655653
- Title: Estimating Treatment Effects in Continuous Time with Hidden Confounders
- Title(参考訳): 隠れた共同創設者による継続的治療効果の推定
- Authors: Defu Cao, James Enouen, Yan Liu
- Abstract要約: 隠れた共同創設者の存在下での縦断的な治療効果の推定は、依然として極めて難しい問題である。
制御微分方程式とリプシッツ拘束畳み込み演算を用いた潜在因子モデル構築のためのニューラル微分方程式の最近の進歩
合成データセットと実世界のデータセットの両方の実験は、隠れた共同創設者の存在下での治療効果を推定するための連続的な時間的手法の可能性を強調している。
- 参考スコア(独自算出の注目度): 8.292249583600809
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Estimating treatment effects plays a crucial role in causal inference, having
many real-world applications like policy analysis and decision making.
Nevertheless, estimating treatment effects in the longitudinal setting in the
presence of hidden confounders remains an extremely challenging problem.
Recently, there is a growing body of work attempting to obtain unbiased ITE
estimates from time-dynamic observational data by ignoring the possible
existence of hidden confounders. Additionally, many existing works handling
hidden confounders are not applicable for continuous-time settings. In this
paper, we extend the line of work focusing on deconfounding in the dynamic time
setting in the presence of hidden confounders. We leverage recent advancements
in neural differential equations to build a latent factor model using a
stochastic controlled differential equation and Lipschitz constrained
convolutional operation in order to continuously incorporate information about
ongoing interventions and irregularly sampled observations. Experiments on both
synthetic and real-world datasets highlight the promise of continuous time
methods for estimating treatment effects in the presence of hidden confounders.
- Abstract(参考訳): 治療効果の推定は因果推論において重要な役割を担い、政策分析や意思決定のような現実世界の多くの応用がある。
それでも、隠れた共同創設者の存在下での縦断的な治療効果の推定は非常に難しい問題である。
近年,隠れた共同設立者の存在を無視して,時間動的観測データから未偏りの ite 推定を得る作業が増えている。
さらに、隠れた共同創設者を扱う既存の作業の多くは、継続的な時間設定には適用できない。
本稿では,隠れた共同創設者の存在下での動的時間設定におけるデコンウンディングに焦点をあてる作業の行を延長する。
神経微分方程式の最近の進歩を利用して,確率制御微分方程式とリプシッツ制約畳み込み演算を用いた潜在因子モデルを構築し,進行中の介入や不規則にサンプリングされた観測に関する情報を連続的に取り入れる。
合成データセットと現実世界データセットの両方の実験では、隠れた共同創設者の存在下で治療効果を推定するための連続時間法が期待されている。
関連論文リスト
- On the Identification of Temporally Causal Representation with Instantaneous Dependence [50.14432597910128]
時間的因果表現学習は時系列観測から潜在因果過程を特定することを目的としている。
ほとんどの方法は、潜在因果過程が即時関係を持たないという仮定を必要とする。
我々は,インスタントtextbfOus textbfLatent dynamics のための textbfIDentification フレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-24T08:08:05Z) - COSTAR: Improved Temporal Counterfactual Estimation with Self-Supervised
Learning [35.119957381211236]
我々は,歴史表現を改善するために自己教師付き学習を統合する新しいアプローチであるCOSTAR(Counterfactual Self-Supervised Transformer)を紹介する。
COSTARは、既存のモデルと比較して、推定精度と分布外データへの一般化において優れた性能が得られる。
論文 参考訳(メタデータ) (2023-11-01T22:38:14Z) - Doubly Robust Proximal Causal Learning for Continuous Treatments [56.05592840537398]
本稿では,カーネルベースの2倍頑健な因果学習推定器を提案する。
オラクル形式は影響関数の一貫した近似であることを示す。
次に、平均二乗誤差の観点から総合収束解析を行う。
論文 参考訳(メタデータ) (2023-09-22T12:18:53Z) - Estimating Treatment Effects from Irregular Time Series Observations
with Hidden Confounders [15.41689729746877]
実世界の時系列には、大規模で不規則で断続的な時系列観測が含まれる。
隠れた共同創設者の存在は 偏見のある治療推定につながる
不規則なサンプルによる連続的な時間設定では、因果関係のダイナミクスを直接扱うことは困難である。
論文 参考訳(メタデータ) (2023-03-04T04:55:34Z) - Variational Temporal Deconfounder for Individualized Treatment Effect
Estimation from Longitudinal Observational Data [8.347630187110004]
経年的観察データから治療効果を推定するための既存のアプローチは、通常「不整合性」という強い仮定に基づいて構築される。
本稿では, プロキシを用いた縦方向設定における深部変分埋め込みを応用した変分時間デコノミー(VTD)を提案する。
我々は,本手法を人工的および実世界の臨床データの両方で検証し,本手法が他の既存モデルと比較して有意な偏りを隠蔽する場合に有効であることを示した。
論文 参考訳(メタデータ) (2022-07-23T16:43:12Z) - Continuous-Time Modeling of Counterfactual Outcomes Using Neural
Controlled Differential Equations [84.42837346400151]
反現実的な結果を予測することは、パーソナライズされたヘルスケアをアンロックする可能性がある。
既存の因果推論アプローチでは、観察と治療決定の間の通常の離散時間間隔が考慮されている。
そこで本研究では,腫瘍増殖モデルに基づく制御可能なシミュレーション環境を提案する。
論文 参考訳(メタデータ) (2022-06-16T17:15:15Z) - SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event
Data [83.50281440043241]
時系列データから不均一な処理効果を推定する問題について検討する。
本稿では,バランス表現に基づく治療特異的ハザード推定のための新しいディープラーニング手法を提案する。
論文 参考訳(メタデータ) (2021-10-26T20:13:17Z) - Continuous Latent Process Flows [47.267251969492484]
任意の時間スタンプにおける連続時系列ダイナミクスの部分的な観察は多くの分野に存在する。このタイプのデータに連続力学を用いた統計モデルを適用することは、直感的なレベルで有望であるだけでなく、実用的な利点もある。
微分方程式によって駆動される時間依存正規化フローを用いて、連続潜時プロセスを連続可観測プロセスに復号する原則的アーキテクチャである連続潜時プロセスフロー(CLPF)を用いて、これらの課題に取り組む。
我々のアブレーション研究は、不規則な時間グリッド上での様々な推論タスクへの貢献の有効性を実証している。
論文 参考訳(メタデータ) (2021-06-29T17:16:04Z) - Estimating Individual Treatment Effects with Time-Varying Confounders [9.784193264717098]
医療において、観察データから個別治療効果(ITE)を推定することは意義があり実用的である。
既存の作業は主に、隠れた共同設立者が存在しないという強い無知の仮定に依存している。
時系列重み付け (DSW) を用いて, ITE の時間変化を推定する手法を提案する。
論文 参考訳(メタデータ) (2020-08-27T02:21:56Z) - Estimating the Effects of Continuous-valued Interventions using
Generative Adversarial Networks [103.14809802212535]
我々は,連続的評価介入の効果を推定する問題に対処するため,GAN(Generative Adversarial Network)フレームワークを構築した。
我々のモデルであるSCIGANは柔軟であり、いくつかの異なる継続的な介入に対する対実的な結果の同時推定が可能である。
継続的な介入に移行することによって生じる課題に対処するために、差別者のための新しいアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-02-27T18:46:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。