論文の概要: Chained-DP: Can We Recycle Privacy Budget?
- arxiv url: http://arxiv.org/abs/2309.07075v3
- Date: Tue, 19 Sep 2023 01:54:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 04:50:57.984179
- Title: Chained-DP: Can We Recycle Privacy Budget?
- Title(参考訳): Chained-DP:プライバシ予算のリサイクルは可能か?
- Authors: Jingyi Li, Guangjing Huang, Liekang Zeng, Lin Chen, Xu Chen,
- Abstract要約: 本稿では,ユーザが順次データアグリゲーションを実行し,プライバシ予算を再利用することのできる,新しいChained-DPフレームワークを提案する。
逐次ゲームの数学的性質を示し、そのナッシュ平衡を解き、証明可能な経済特性を持つインセンティブメカニズムを設計する。
提案手法の有効性を数値シミュレーションにより検証し,従来のLPP機構と比較して,プライバシ予算の大幅な削減と推定誤差の低減を図った。
- 参考スコア(独自算出の注目度): 18.19895364709435
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Privacy-preserving vector mean estimation is a crucial primitive in federated analytics. Existing practices usually resort to Local Differentiated Privacy (LDP) mechanisms that inject random noise into users' vectors when communicating with users and the central server. Due to the privacy-utility trade-off, the privacy budget has been widely recognized as the bottleneck resource that requires well-provisioning. In this paper, we explore the possibility of privacy budget recycling and propose a novel Chained-DP framework enabling users to carry out data aggregation sequentially to recycle the privacy budget. We establish a sequential game to model the user interactions in our framework. We theoretically show the mathematical nature of the sequential game, solve its Nash Equilibrium, and design an incentive mechanism with provable economic properties. We further derive a differentially privacy-guaranteed protocol to alleviate potential privacy collusion attacks to avoid holistic exposure. Our numerical simulation validates the effectiveness of Chained-DP, showing that it can significantly save privacy budget and lower estimation error compared to the traditional LDP mechanism.
- Abstract(参考訳): プライバシー保護ベクター平均推定は、フェデレーション分析において重要なプリミティブである。
既存のプラクティスは、通常、ユーザと中央サーバと通信する際に、ユーザのベクトルにランダムノイズを注入するローカル微分プライバシ(LDP)メカニズムを利用する。
プライバシとユーティリティのトレードオフのため、プライバシー予算は十分に計画を必要とするボトルネックリソースとして広く認識されている。
本稿では,プライバシ予算のリサイクルの可能性を検討するとともに,ユーザが順次データアグリゲーションを実行して,プライバシ予算のリサイクルを可能にする新しいチェインドDPフレームワークを提案する。
当社のフレームワークにおけるユーザインタラクションをモデル化するためのシーケンシャルなゲームを構築します。
理論的には、シーケンシャルゲームの数学的性質を示し、ナッシュ平衡を解き、証明可能な経済特性を持つインセンティブメカニズムを設計する。
さらに、プライバシー保証プロトコルにより、プライバシー侵害の可能性を軽減し、全体的な暴露を避ける。
提案手法の有効性を数値シミュレーションにより検証し,従来のLPP機構と比較して,プライバシ予算の大幅な削減と推定誤差の低減を図った。
関連論文リスト
- Pseudo-Probability Unlearning: Towards Efficient and Privacy-Preserving Machine Unlearning [59.29849532966454]
本稿では,PseudoProbability Unlearning (PPU)を提案する。
提案手法は,最先端の手法に比べて20%以上の誤りを忘れる改善を実現している。
論文 参考訳(メタデータ) (2024-11-04T21:27:06Z) - Privacy Amplification for the Gaussian Mechanism via Bounded Support [64.86780616066575]
インスタンスごとの差分プライバシー(pDP)やフィッシャー情報損失(FIL)といったデータ依存のプライバシ会計フレームワークは、固定されたトレーニングデータセット内の個人に対してきめ細かいプライバシー保証を提供する。
本稿では,データ依存会計下でのプライバシ保証を向上することを示すとともに,バウンドサポートによるガウス機構の簡単な修正を提案する。
論文 参考訳(メタデータ) (2024-03-07T21:22:07Z) - A Randomized Approach for Tight Privacy Accounting [63.67296945525791]
推定検証リリース(EVR)と呼ばれる新しい差分プライバシーパラダイムを提案する。
EVRパラダイムは、まずメカニズムのプライバシパラメータを推定し、その保証を満たすかどうかを確認し、最後にクエリ出力を解放する。
我々の実証的な評価は、新たに提案されたEVRパラダイムが、プライバシ保護機械学習のユーティリティプライバシトレードオフを改善することを示している。
論文 参考訳(メタデータ) (2023-04-17T00:38:01Z) - Rethinking Disclosure Prevention with Pointwise Maximal Leakage [36.3895452861944]
本稿では,秘密の$X$の低エントロピー機能の価値を開示し,実用性を実現するユーティリティとプライバシの一般モデルを提案する。
我々は、大衆の意見に反して、有意義な推論によるプライバシー保証を提供することを証明している。
PMLベースのプライバシは互換性があることを示し、差分プライバシーのような既存の概念に対する洞察を提供する。
論文 参考訳(メタデータ) (2023-03-14T10:47:40Z) - Breaking the Communication-Privacy-Accuracy Tradeoff with
$f$-Differential Privacy [51.11280118806893]
サーバが複数のユーザの協調的なデータ分析を,プライバシの懸念と限られた通信能力で調整する,フェデレートされたデータ分析問題を考える。
有限出力空間を有する離散値機構の局所的差分プライバシー保証を$f$-differential privacy (DP) レンズを用いて検討する。
より具体的には、様々な離散的評価機構の厳密な$f$-DP保証を導出することにより、既存の文献を前進させる。
論文 参考訳(メタデータ) (2023-02-19T16:58:53Z) - Optimal and Differentially Private Data Acquisition: Central and Local
Mechanisms [9.599356978682108]
プライバシに敏感なユーザからデータを収集するプラットフォームの問題を考え,その基盤となる関心パラメータを推定する。
ユーザに対して、プライバシ保証を提供するための2つの一般的な差分プライバシ設定について検討する。
このメカニズム設計問題は,ユーザのプライバシ感を真に報告するための推定器と支払器の最適選択として機能する。
論文 参考訳(メタデータ) (2022-01-10T00:27:43Z) - Privacy Amplification via Shuffling for Linear Contextual Bandits [51.94904361874446]
ディファレンシャルプライバシ(DP)を用いた文脈線形バンディット問題について検討する。
プライバシのシャッフルモデルを利用して,JDP と LDP のプライバシ/ユーティリティトレードオフを実現することができることを示す。
以上の結果から,ローカルプライバシを保ちながらシャッフルモデルを活用することで,JDPとDPのトレードオフを得ることが可能であることが示唆された。
論文 参考訳(メタデータ) (2021-12-11T15:23:28Z) - Generalized Linear Bandits with Local Differential Privacy [4.922800530841394]
パーソナライズドメディカルやオンライン広告などの多くのアプリケーションは、効果的な学習のために個人固有の情報を活用する必要がある。
これは、局所微分プライバシー(LDP)というプライバシーの厳格な概念を文脈的盗賊に導入する動機となっている。
本稿では,一般線形バンドレットに対するLDPアルゴリズムを設計し,非プライバシ設定と同じ後悔点を実現する。
論文 参考訳(メタデータ) (2021-06-07T06:42:00Z) - Graph-Homomorphic Perturbations for Private Decentralized Learning [64.26238893241322]
ローカルな見積もりの交換は、プライベートデータに基づくデータの推測を可能にする。
すべてのエージェントで独立して選択された摂動により、パフォーマンスが著しく低下する。
本稿では,特定のヌル空間条件に従って摂動を構成する代替スキームを提案する。
論文 参考訳(メタデータ) (2020-10-23T10:35:35Z) - Differential Privacy at Risk: Bridging Randomness and Privacy Budget [5.393465689287103]
我々は、ノイズ分布によって引き起こされる明示的ランダム性や、データ生成によって引き起こされる暗黙的ランダム性など、ランダム性源の役割を分析する。
プライバシ保存機構の確率的校正であるリスクのあるプライバシを提案する。
コスト最適プライバシを用いたコンポジションは,従来の高度なコンポジションよりも強力なプライバシ保証を提供することを示す。
論文 参考訳(メタデータ) (2020-03-02T15:44:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。