Wasserstein Markets for Differentially-Private Data
- URL: http://arxiv.org/abs/2412.02609v1
- Date: Tue, 03 Dec 2024 17:40:26 GMT
- Title: Wasserstein Markets for Differentially-Private Data
- Authors: Saurab Chhachhi, Fei Teng,
- Abstract summary: Data markets provide a means to enable wider access as well as determine the appropriate privacy-utility trade-off.
Existing data market frameworks either require a trusted third party to perform expensive valuations or are unable to capture the nature of data value.
This paper proposes a valuation mechanism based on the Wasserstein distance for differentially-private data, and corresponding procurement mechanisms.
- Score: 1.4266656344673316
- License:
- Abstract: Data is an increasingly vital component of decision making processes across industries. However, data access raises privacy concerns motivating the need for privacy-preserving techniques such as differential privacy. Data markets provide a means to enable wider access as well as determine the appropriate privacy-utility trade-off. Existing data market frameworks either require a trusted third party to perform computationally expensive valuations or are unable to capture the combinatorial nature of data value and do not endogenously model the effect of differential privacy. This paper addresses these shortcomings by proposing a valuation mechanism based on the Wasserstein distance for differentially-private data, and corresponding procurement mechanisms by leveraging incentive mechanism design theory, for task-agnostic data procurement, and task-specific procurement co-optimisation. The mechanisms are reformulated into tractable mixed-integer second-order cone programs, which are validated with numerical studies.
Related papers
- Privacy Amplification for the Gaussian Mechanism via Bounded Support [64.86780616066575]
Data-dependent privacy accounting frameworks such as per-instance differential privacy (pDP) and Fisher information loss (FIL) confer fine-grained privacy guarantees for individuals in a fixed training dataset.
We propose simple modifications of the Gaussian mechanism with bounded support, showing that they amplify privacy guarantees under data-dependent accounting.
arXiv Detail & Related papers (2024-03-07T21:22:07Z) - Privacy-Aware Data Acquisition under Data Similarity in Regression Markets [29.64195175524365]
We show that data similarity and privacy preferences are integral to market design.
We numerically evaluate how data similarity affects market participation and traded data value.
arXiv Detail & Related papers (2023-12-05T09:39:04Z) - Striking a Balance: An Optimal Mechanism Design for Heterogenous Differentially Private Data Acquisition for Logistic Regression [7.523820334642733]
We address the challenge of solving machine learning tasks using data from privacy-sensitive sellers.
Since the data is private, we design a data market that incentivizes sellers to provide their data in exchange for payments.
arXiv Detail & Related papers (2023-09-19T05:51:13Z) - Breaking the Communication-Privacy-Accuracy Tradeoff with
$f$-Differential Privacy [51.11280118806893]
We consider a federated data analytics problem in which a server coordinates the collaborative data analysis of multiple users with privacy concerns and limited communication capability.
We study the local differential privacy guarantees of discrete-valued mechanisms with finite output space through the lens of $f$-differential privacy (DP)
More specifically, we advance the existing literature by deriving tight $f$-DP guarantees for a variety of discrete-valued mechanisms.
arXiv Detail & Related papers (2023-02-19T16:58:53Z) - DP2-Pub: Differentially Private High-Dimensional Data Publication with
Invariant Post Randomization [58.155151571362914]
We propose a differentially private high-dimensional data publication mechanism (DP2-Pub) that runs in two phases.
splitting attributes into several low-dimensional clusters with high intra-cluster cohesion and low inter-cluster coupling helps obtain a reasonable privacy budget.
We also extend our DP2-Pub mechanism to the scenario with a semi-honest server which satisfies local differential privacy.
arXiv Detail & Related papers (2022-08-24T17:52:43Z) - Post-processing of Differentially Private Data: A Fairness Perspective [53.29035917495491]
This paper shows that post-processing causes disparate impacts on individuals or groups.
It analyzes two critical settings: the release of differentially private datasets and the use of such private datasets for downstream decisions.
It proposes a novel post-processing mechanism that is (approximately) optimal under different fairness metrics.
arXiv Detail & Related papers (2022-01-24T02:45:03Z) - Data Sharing Markets [95.13209326119153]
We study a setup where each agent can be both buyer and seller of data.
We consider two cases: bilateral data exchange (trading data with data) and unilateral data exchange (trading data with money)
arXiv Detail & Related papers (2021-07-19T06:00:34Z) - Causally Constrained Data Synthesis for Private Data Release [36.80484740314504]
Using synthetic data which reflects certain statistical properties of the original data preserves the privacy of the original data.
Prior works utilize differentially private data release mechanisms to provide formal privacy guarantees.
We propose incorporating causal information into the training process to favorably modify the aforementioned trade-off.
arXiv Detail & Related papers (2021-05-27T13:46:57Z) - Graph-Homomorphic Perturbations for Private Decentralized Learning [64.26238893241322]
Local exchange of estimates allows inference of data based on private data.
perturbations chosen independently at every agent, resulting in a significant performance loss.
We propose an alternative scheme, which constructs perturbations according to a particular nullspace condition, allowing them to be invisible.
arXiv Detail & Related papers (2020-10-23T10:35:35Z) - A Critical Overview of Privacy-Preserving Approaches for Collaborative
Forecasting [0.0]
Cooperation between different data owners may lead to an improvement in forecast quality.
Due to business competitive factors and personal data protection questions, said data owners might be unwilling to share their data.
This paper analyses the state-of-the-art and unveils several shortcomings of existing methods in guaranteeing data privacy.
arXiv Detail & Related papers (2020-04-20T20:21:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.