A Learning-based Declarative Privacy-Preserving Framework for Federated Data Management
- URL: http://arxiv.org/abs/2401.12393v2
- Date: Fri, 27 Sep 2024 14:40:11 GMT
- Title: A Learning-based Declarative Privacy-Preserving Framework for Federated Data Management
- Authors: Hong Guan, Summer Gautier, Rajan Hari Ambrish, Yancheng Wang, Chaowei Xiao, Yingzhen Yang, Jia Zou,
- Abstract summary: We introduce a new privacy-preserving technique that uses a deep learning model trained using Differentially-Private Descent (DP-SGD) algorithm.
We then demonstrate a novel declarative privacy-preserving workflow that allows users to specify "what private information to protect" rather than "how to protect"
- Score: 23.847568516724937
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It is challenging to select the right privacy-preserving mechanism for federated query processing over multiple private data silos. There exist numerous privacy-preserving mechanisms, such as secure multi-party computing (SMC), approximate query processing with differential privacy (DP), combined SMC and DP, DP-based data obfuscation, and federated learning. These mechanisms make different trade-offs among accuracy, privacy, execution efficiency, and storage efficiency. In this work, we first introduce a new privacy-preserving technique that uses a deep learning model trained using the Differentially-Private Stochastic Gradient Descent (DP-SGD) algorithm to replace portions of actual data to answer a query. We then demonstrate a novel declarative privacy-preserving workflow that allows users to specify "what private information to protect" rather than "how to protect". Under the hood, the system relies on a cost model to automatically choose privacy-preserving mechanisms as well as hyper-parameters. At the same time, the proposed workflow also allows human experts to review and tune the selected privacy-preserving mechanism for audit/compliance, and optimization purposes.
Related papers
- Masked Differential Privacy [64.32494202656801]
We propose an effective approach called masked differential privacy (DP), which allows for controlling sensitive regions where differential privacy is applied.
Our method operates selectively on data and allows for defining non-sensitive-temporal regions without DP application or combining differential privacy with other privacy techniques within data samples.
arXiv Detail & Related papers (2024-10-22T15:22:53Z) - Mind the Privacy Unit! User-Level Differential Privacy for Language Model Fine-Tuning [62.224804688233]
differential privacy (DP) offers a promising solution by ensuring models are 'almost indistinguishable' with or without any particular privacy unit.
We study user-level DP motivated by applications where it necessary to ensure uniform privacy protection across users.
arXiv Detail & Related papers (2024-06-20T13:54:32Z) - Provable Privacy with Non-Private Pre-Processing [56.770023668379615]
We propose a general framework to evaluate the additional privacy cost incurred by non-private data-dependent pre-processing algorithms.
Our framework establishes upper bounds on the overall privacy guarantees by utilising two new technical notions.
arXiv Detail & Related papers (2024-03-19T17:54:49Z) - Unified Mechanism-Specific Amplification by Subsampling and Group Privacy Amplification [54.1447806347273]
Amplification by subsampling is one of the main primitives in machine learning with differential privacy.
We propose the first general framework for deriving mechanism-specific guarantees.
We analyze how subsampling affects the privacy of groups of multiple users.
arXiv Detail & Related papers (2024-03-07T19:36:05Z) - Privacy Preserving Large Language Models: ChatGPT Case Study Based Vision and Framework [6.828884629694705]
This article proposes the conceptual model called PrivChatGPT, a privacy-generative model for LLMs.
PrivChatGPT consists of two main components i.e., preserving user privacy during the data curation/pre-processing together with preserving private context and the private training process for large-scale data.
arXiv Detail & Related papers (2023-10-19T06:55:13Z) - Libertas: Privacy-Preserving Computation for Decentralised Personal Data Stores [19.54818218429241]
We propose a modular design for integrating Secure Multi-Party Computation with Solid.
Our architecture, Libertas, requires no protocol level changes in the underlying design of Solid.
We show how this can be combined with existing differential privacy techniques to also ensure output privacy.
arXiv Detail & Related papers (2023-09-28T12:07:40Z) - A Randomized Approach for Tight Privacy Accounting [63.67296945525791]
We propose a new differential privacy paradigm called estimate-verify-release (EVR)
EVR paradigm first estimates the privacy parameter of a mechanism, then verifies whether it meets this guarantee, and finally releases the query output.
Our empirical evaluation shows the newly proposed EVR paradigm improves the utility-privacy tradeoff for privacy-preserving machine learning.
arXiv Detail & Related papers (2023-04-17T00:38:01Z) - Privacy-Preserving Matrix Factorization for Recommendation Systems using
Gaussian Mechanism [2.84279467589473]
We propose a privacy-preserving recommendation system based on the differential privacy framework and matrix factorization.
As differential privacy is a powerful and robust mathematical framework for designing privacy-preserving machine learning algorithms, it is possible to prevent adversaries from extracting sensitive user information.
arXiv Detail & Related papers (2023-04-11T13:50:39Z) - Breaking the Communication-Privacy-Accuracy Tradeoff with
$f$-Differential Privacy [51.11280118806893]
We consider a federated data analytics problem in which a server coordinates the collaborative data analysis of multiple users with privacy concerns and limited communication capability.
We study the local differential privacy guarantees of discrete-valued mechanisms with finite output space through the lens of $f$-differential privacy (DP)
More specifically, we advance the existing literature by deriving tight $f$-DP guarantees for a variety of discrete-valued mechanisms.
arXiv Detail & Related papers (2023-02-19T16:58:53Z) - Assessing Differentially Private Variational Autoencoders under
Membership Inference [26.480694390462617]
We quantify and compare the privacy-accuracy trade-off for differentially private Variational Autoencoders.
We do rarely observe favorable privacy-accuracy trade-off for Variational Autoencoders, and identify a case where LDP outperforms CDP.
arXiv Detail & Related papers (2022-04-16T21:53:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.