論文の概要: Disentangled Representation for Causal Mediation Analysis
- arxiv url: http://arxiv.org/abs/2302.09694v1
- Date: Sun, 19 Feb 2023 23:37:17 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-21 17:05:03.449442
- Title: Disentangled Representation for Causal Mediation Analysis
- Title(参考訳): 因果メディエーション分析のためのアンタングル表現
- Authors: Ziqi Xu, Debo Cheng, Jiuyong Li, Jixue Liu, Lin Liu, Ke Wang
- Abstract要約: 因果媒介分析(英: Causal mediation analysis)は、直接的および間接的な効果を明らかにするためにしばしば用いられる方法である。
深層学習はメディエーション分析において有望であるが、現在の手法では、治療、メディエーター、結果に同時に影響を及ぼす潜在的共同創設者のみを前提としている。
そこで本研究では,助成金の表現を3つのタイプに分けて,自然的直接効果,自然間接効果,および全効果を正確に推定する,ディスタングル・メディエーション分析変分自動エンコーダ(DMAVAE)を提案する。
- 参考スコア(独自算出の注目度): 21.321889508637106
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Estimating direct and indirect causal effects from observational data is
crucial to understanding the causal mechanisms and predicting the behaviour
under different interventions. Causal mediation analysis is a method that is
often used to reveal direct and indirect effects. Deep learning shows promise
in mediation analysis, but the current methods only assume latent confounders
that affect treatment, mediator and outcome simultaneously, and fail to
identify different types of latent confounders (e.g., confounders that only
affect the mediator or outcome). Furthermore, current methods are based on the
sequential ignorability assumption, which is not feasible for dealing with
multiple types of latent confounders. This work aims to circumvent the
sequential ignorability assumption and applies the piecemeal deconfounding
assumption as an alternative. We propose the Disentangled Mediation Analysis
Variational AutoEncoder (DMAVAE), which disentangles the representations of
latent confounders into three types to accurately estimate the natural direct
effect, natural indirect effect and total effect. Experimental results show
that the proposed method outperforms existing methods and has strong
generalisation ability. We further apply the method to a real-world dataset to
show its potential application.
- Abstract(参考訳): 観察データから直接的および間接的因果効果を推定することは、因果メカニズムを理解し、異なる介入下での行動を予測する上で重要である。
因果媒介分析は直接的および間接的な効果を明らかにするためにしばしば用いられる方法である。
深層学習は調停分析に有望性を示しているが、現在の手法では、治療、調停、結果に影響を及ぼす潜在性共起者を仮定し、異なるタイプの潜在性共起者を識別できない(例えば、仲介者または結果にのみ影響を及ぼす共同設立者)。
さらに、現在の手法は、複数のタイプの潜在的共同設立者を扱うには不可能な逐次的無知の仮定に基づいている。
本研究は, 逐次的無知の仮定を回避し, 代替として断片的分解仮定を適用することを目的とする。
そこで本研究では,助成金の表現を3つのタイプに分けて,自然的直接効果,自然間接効果,および全効果を正確に推定する,ディスタングル・メディエーション分析変分自動エンコーダ(DMAVAE)を提案する。
実験の結果,提案手法は既存の手法よりも優れ,高い一般化能力を有することがわかった。
さらに本手法を実世界のデータセットに適用し,その可能性を示す。
関連論文リスト
- Measuring the Reliability of Causal Probing Methods: Tradeoffs, Limitations, and the Plight of Nullifying Interventions [3.173096780177902]
因果探索は、大きな言語モデルのような基礎モデルを理解するためのアプローチである。
本稿では、因果探索介入の信頼性を評価するための一般的な実証分析フレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-28T03:45:49Z) - On the Identification of Temporally Causal Representation with Instantaneous Dependence [50.14432597910128]
時間的因果表現学習は時系列観測から潜在因果過程を特定することを目的としている。
ほとんどの方法は、潜在因果過程が即時関係を持たないという仮定を必要とする。
我々は,インスタントtextbfOus textbfLatent dynamics のための textbfIDentification フレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-24T08:08:05Z) - Causal Inference from Text: Unveiling Interactions between Variables [20.677407402398405]
既存の方法は、治療と結果の両方に影響を及ぼす共変量しか説明できない。
このバイアスは、衝突しない共変量について十分に考慮されていないことから生じる。
本研究では,変数間の相互作用を明らかにすることにより,バイアスを軽減することを目的とする。
論文 参考訳(メタデータ) (2023-11-09T11:29:44Z) - Benchmarking Bayesian Causal Discovery Methods for Downstream Treatment
Effect Estimation [137.3520153445413]
下流推論に重点を置く因果発見手法の評価において,顕著なギャップが存在する。
我々は,GFlowNetsに基づく新たな手法を含む,確立された7つの基本因果探索手法を評価する。
研究の結果,研究対象のアルゴリズムのいくつかは,多種多様なATEモードを効果的に捉えることができることがわかった。
論文 参考訳(メタデータ) (2023-07-11T02:58:10Z) - Doubly Robust Estimation of Direct and Indirect Quantile Treatment
Effects with Machine Learning [0.0]
本稿では, 直接的および間接的量子的処理効果の機械学習推定器を提案する。
提案手法は,確率結果の累積分布関数の効率的なスコア関数に基づく。
また,統計的推測のための乗算器ブートストラップを提案し,乗算器の有効性を示す。
論文 参考訳(メタデータ) (2023-07-03T14:27:15Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
本研究では, 因果表現学習, 潜伏因果変数を推定するタスク, およびそれらの変数の混合から因果関係を考察する。
我々のゴールは、根底にある真理潜入者とその因果グラフの両方を、介入データから解決不可能なあいまいさの集合まで識別することである。
論文 参考訳(メタデータ) (2023-06-01T10:51:58Z) - Counterfactual Reasoning for Out-of-distribution Multimodal Sentiment
Analysis [56.84237932819403]
本稿では,OODの高次一般化に対するテキストモダリティの悪影響を推定・緩和することを目的とする。
そこで本研究では,マルチモーダル感情分析のためのモデルに依存しない反現実的フレームワークを考案した。
論文 参考訳(メタデータ) (2022-07-24T03:57:40Z) - Differentiable Causal Discovery Under Latent Interventions [3.867363075280544]
最近の研究は、介入した変数が未知であっても、勾配に基づく手法による介入データを活用することにより因果発見の有望な結果を示している。
複数の介入分布と1つの観察分布からサンプリングされた広範囲なデータセットを用いたシナリオを想定するが、どの分布がそれぞれのサンプルに由来するのか、どのように介入がシステムに影響を及ぼすのかはわからない。
本稿では、ニューラルネットワークと変分推論に基づいて、無限混合物間の共用因果グラフを学習することで、このシナリオに対処する手法を提案する。
論文 参考訳(メタデータ) (2022-03-04T14:21:28Z) - Causal Mediation Analysis with Hidden Confounders [24.246450472404614]
CMA (Causal Mediation Analysis) は因果効果の同定と推定のための公式な統計手法である。
この研究は、統一された共著者とそのプロキシ変数による因果グラフに従うことによって、厳密な仮定を回避することを目的とする。
我々のコアコントリビューションは、深層潜伏変数モデルとプロキシ戦略を組み合わせたアルゴリズムであり、統一された代理共同創設者を共同で推論し、観測変数からCMAの異なる因果効果を推定する。
論文 参考訳(メタデータ) (2021-02-21T06:46:11Z) - Almost-Matching-Exactly for Treatment Effect Estimation under Network
Interference [73.23326654892963]
本研究では,観測ネットワーク上でユニットが接続されたランダム化実験から直接処理効果を回復するマッチング手法を提案する。
本手法は, 近傍グラフ内の一意部分グラフの個数にほぼ一致する。
論文 参考訳(メタデータ) (2020-03-02T15:21:20Z) - Learning Overlapping Representations for the Estimation of
Individualized Treatment Effects [97.42686600929211]
観測データから代替案の可能性を推定することは難しい問題である。
入力のドメイン不変表現を学習するアルゴリズムは、しばしば不適切であることを示す。
我々は,様々なベンチマークデータセットの最先端性を大幅に向上させる,ディープカーネル回帰アルゴリズムと後続正規化フレームワークを開発した。
論文 参考訳(メタデータ) (2020-01-14T12:56:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。