論文の概要: Proximal Inference on Population Intervention Indirect Effect
- arxiv url: http://arxiv.org/abs/2504.11848v1
- Date: Wed, 16 Apr 2025 08:14:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-17 14:38:57.141053
- Title: Proximal Inference on Population Intervention Indirect Effect
- Title(参考訳): 集団介入間接効果に関する近位推論
- Authors: Yang Bai, Yifan Cui, Baoluo Sun,
- Abstract要約: 人口介入間接効果 (PIIE) は、人口介入効果の間接成分を表す新しい媒介効果である。
本研究は、PIIE識別を、未測定の共同創業者が被曝・被曝・被曝・被曝・被曝・被曝・被曝関係に影響を及ぼすような設定に拡張する。
- 参考スコア(独自算出の注目度): 8.296034406842345
- License:
- Abstract: The population intervention indirect effect (PIIE) is a novel mediation effect representing the indirect component of the population intervention effect. Unlike traditional mediation measures, such as the natural indirect effect, the PIIE holds particular relevance in observational studies involving unethical exposures, when hypothetical interventions that impose harmful exposures are inappropriate. Although prior research has identified PIIE under unmeasured confounders between exposure and outcome, it has not fully addressed the confounding that affects the mediator. This study extends the PIIE identification to settings where unmeasured confounders influence exposure-outcome, exposure-mediator, and mediator-outcome relationships. Specifically, we leverage observed covariates as proxy variables for unmeasured confounders, constructing three proximal identification frameworks. Additionally, we characterize the semiparametric efficiency bound and develop multiply robust and locally efficient estimators. To handle high-dimensional nuisance parameters, we propose a debiased machine learning approach that achieves $\sqrt{n}$-consistency and asymptotic normality to estimate the true PIIE values, even when the machine learning estimators for the nuisance functions do not converge at $\sqrt{n}$-rate. In simulations, our estimators demonstrate higher confidence interval coverage rates than conventional methods across various model misspecifications. In a real data application, our approaches reveal an indirect effect of alcohol consumption on depression risk mediated by depersonalization symptoms.
- Abstract(参考訳): 人口介入間接効果 (PIIE) は、人口介入効果の間接成分を表す新しい媒介効果である。
自然間接効果のような伝統的な媒介手段とは異なり、PIIEは有害な暴露を課す仮説的介入が不適切である場合、非倫理的暴露を含む観察研究において特に関係がある。
これまでの研究では、被曝と結果の間の未測定の共同設立者の下でPIIEを特定できたが、仲介者に影響を与える欠点を完全には解決していない。
本研究は、PIIE識別を、未測定の共同創業者が被曝・被曝・被曝・被曝・被曝・被曝・被曝関係に影響を及ぼすような設定に拡張する。
具体的には、観測された共変数を、測定されていない共同創設者のプロキシ変数として利用し、3つの近位識別フレームワークを構築した。
さらに,半パラメトリックの効率バウンドを特徴付けるとともに,多重頑健で局所的に効率的な推定器を開発する。
高次元ニュアンスパラメータに対処するため,Nuisance関数の機械学習推定器が$\sqrt{n}$-rateに収束しない場合であっても,$\sqrt{n}$-consistencyと漸近正規性を実現し,真のPIIE値を推定する。
シミュレーションでは, 従来手法よりも信頼区間のカバレッジ率が高いことが示唆された。
実データでは,脱人化症状を介するうつ病リスクに対するアルコール摂取の間接的影響を明らかにする。
関連論文リスト
- Disentangled Graph Autoencoder for Treatment Effect Estimation [1.361700725822891]
本稿では,ネットワーク化された観測データに対する処理効果推定のための非交叉変分グラフオートエンコーダを提案する。
我々のグラフエンコーダは、潜伏因子を、ヒルベルト・シュミット独立基準を用いて因子独立を強制しながら、楽器的、障害的、調整的、ノイズ的な要因に分解する。
論文 参考訳(メタデータ) (2024-12-19T03:44:49Z) - Automating the Selection of Proxy Variables of Unmeasured Confounders [16.773841751009748]
既存のプロキシ変数推定器を拡張して、治療と結果の間に複数の未測定の共同創設者が存在するシナリオに対応する。
本稿では、プロキシ変数の選択と因果効果の偏りのない推定のための2つのデータ駆動手法を提案する。
論文 参考訳(メタデータ) (2024-05-25T08:53:49Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
本研究では, 因果表現学習, 潜伏因果変数を推定するタスク, およびそれらの変数の混合から因果関係を考察する。
我々のゴールは、根底にある真理潜入者とその因果グラフの両方を、介入データから解決不可能なあいまいさの集合まで識別することである。
論文 参考訳(メタデータ) (2023-06-01T10:51:58Z) - Disentangled Representation for Causal Mediation Analysis [25.114619307838602]
因果媒介分析(英: Causal mediation analysis)は、直接的および間接的な効果を明らかにするためにしばしば用いられる方法である。
深層学習はメディエーション分析において有望であるが、現在の手法では、治療、メディエーター、結果に同時に影響を及ぼす潜在的共同創設者のみを前提としている。
そこで本研究では,助成金の表現を3つのタイプに分けて,自然的直接効果,自然間接効果,および全効果を正確に推定する,ディスタングル・メディエーション分析変分自動エンコーダ(DMAVAE)を提案する。
論文 参考訳(メタデータ) (2023-02-19T23:37:17Z) - Neighborhood Adaptive Estimators for Causal Inference under Network Interference [109.17155002599978]
ネットワークに接続された単位による古典的非干渉仮定の違反について考察する。
トラクタビリティでは、干渉がどのように広がるかを記述する既知のネットワークを考える。
論文 参考訳(メタデータ) (2022-12-07T14:53:47Z) - Treatment Effect Risk: Bounds and Inference [58.442274475425144]
平均的な治療効果は社会福祉の変化を測定するため、たとえ肯定的であっても、人口の約10%に悪影響を及ぼすリスクがある。
本稿では,ICT分布のリスク条件値(CVaR)として定式化されたこの重要なリスク尺度をどう評価するかを検討する。
いくつかの境界は、複素CATE関数を単一の計量に要約したものと解釈することもでき、有界であることとは無関係に興味を持つ。
論文 参考訳(メタデータ) (2022-01-15T17:21:26Z) - Multiply Robust Causal Mediation Analysis with Continuous Treatments [12.196869756333797]
Tchetgen Tchetgen と Shpitser の影響関数に基づく推定器 (2012) に触発された継続的治療の設定に適した推定器を提案する。
提案手法はクロスフィッティングを用いて,ニュアンス関数の滑らかさ要件を緩和し,対象パラメータよりも遅い速度で推定できるようにする。
論文 参考訳(メタデータ) (2021-05-19T16:58:57Z) - Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions [68.6505592770171]
因果効果を推定する際の主な課題の1つである。
そこで本研究では,任意の数の高次元潜入共創者を置き換える新たな因果還元法を提案する。
パラメータ化縮小モデルを観測データと介入データから共同で推定する学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-08T14:29:07Z) - Split-Treatment Analysis to Rank Heterogeneous Causal Effects for
Prospective Interventions [15.443178111068418]
本研究は,予防的介入の可能性が最も高い個人をランク付けする分割処理分析法を提案する。
プロキシ処理に基づく異種因果効果のランキングは,対象治療の効果に基づく順位と同じであることを示す。
論文 参考訳(メタデータ) (2020-11-11T16:17:29Z) - Epidemic mitigation by statistical inference from contact tracing data [61.04165571425021]
我々は,個人が感染するリスクを推定するためにベイズ推定法を開発した。
本稿では,感染防止のための検査・隔離戦略を最適化するために,確率論的リスク推定手法を提案する。
我々のアプローチは、最近接触した個人間の通信のみを必要とする、完全に分散されたアルゴリズムに変換されます。
論文 参考訳(メタデータ) (2020-09-20T12:24:45Z) - Enabling Counterfactual Survival Analysis with Balanced Representations [64.17342727357618]
生存データは様々な医学的応用、すなわち薬物開発、リスクプロファイリング、臨床試験で頻繁に見られる。
本稿では,生存結果に適用可能な対実的推論のための理論的基盤を持つ統一的枠組みを提案する。
論文 参考訳(メタデータ) (2020-06-14T01:15:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。