Deep LF-Net: Semantic Lung Segmentation from Indian Chest Radiographs
Including Severely Unhealthy Images
- URL: http://arxiv.org/abs/2011.09695v1
- Date: Thu, 19 Nov 2020 07:21:02 GMT
- Title: Deep LF-Net: Semantic Lung Segmentation from Indian Chest Radiographs
Including Severely Unhealthy Images
- Authors: Anushikha Singh, Brejesh Lall, B. K. Panigrahi, Anjali Agrawal, Anurag
Agrawal, DJ Christopher, Balamugesh Thangakunam
- Abstract summary: A chest radiograph, commonly called chest x-ray (CxR), plays a vital role in the diagnosis of various lung diseases.
Precise lung segmentation is extremely challenging because of variance in the shape of the lung caused by health issues, age, and gender.
The proposed work investigates the use of an efficient deep convolutional neural network for accurate segmentation of lungs from CxR.
- Score: 5.826056983051642
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A chest radiograph, commonly called chest x-ray (CxR), plays a vital role in
the diagnosis of various lung diseases, such as lung cancer, tuberculosis,
pneumonia, and many more. Automated segmentation of the lungs is an important
step to design a computer-aided diagnostic tool for examination of a CxR.
Precise lung segmentation is considered extremely challenging because of
variance in the shape of the lung caused by health issues, age, and gender. The
proposed work investigates the use of an efficient deep convolutional neural
network for accurate segmentation of lungs from CxR. We attempt an end to end
DeepLabv3+ network which integrates DeepLab architecture, encoder-decoder, and
dilated convolution for semantic lung segmentation with fast training and high
accuracy. We experimented with the different pre-trained base networks:
Resnet18 and Mobilenetv2, associated with the Deeplabv3+ model for performance
analysis. The proposed approach does not require any pre-processing technique
on chest x-ray images before being fed to a neural network. Morphological
operations were used to remove false positives that occurred during semantic
segmentation. We construct a CxR dataset of the Indian population that contain
healthy and unhealthy CxRs of clinically confirmed patients of tuberculosis,
chronic obstructive pulmonary disease, interstitial lung disease, pleural
effusion, and lung cancer. The proposed method is tested on 688 images of our
Indian CxR dataset including images with severe abnormal findings to validate
its robustness. We also experimented on commonly used benchmark datasets such
as Japanese Society of Radiological Technology; Montgomery County, USA; and
Shenzhen, China for state-of-the-art comparison. The performance of our method
is tested against techniques described in the literature and achieved the
highest accuracy for lung segmentation on Indian and public datasets.
Related papers
- Swin-Tempo: Temporal-Aware Lung Nodule Detection in CT Scans as Video
Sequences Using Swin Transformer-Enhanced UNet [2.7547288571938795]
We present an innovative model that harnesses the strengths of both convolutional neural networks and vision transformers.
Inspired by object detection in videos, we treat each 3D CT image as a video, individual slices as frames, and lung nodules as objects, enabling a time-series application.
arXiv Detail & Related papers (2023-10-05T07:48:55Z) - Identification of lung nodules CT scan using YOLOv5 based on convolution
neural network [0.0]
This study was to identify the nodule that were developing in the lungs of the participants.
One-stage detector YOLOv5 trained on 280 CT SCAN from a public dataset LIDC-IDRI based on segmented pulmonary nodules.
arXiv Detail & Related papers (2022-12-31T17:31:22Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Debiasing pipeline improves deep learning model generalization for X-ray
based lung nodule detection [11.228544549618068]
Lung cancer is the leading cause of cancer death worldwide and a good prognosis depends on early diagnosis.
We show that an image pre-processing pipeline that homogenizes and debiases chest X-ray images can improve both internal classification and external generalization.
An evolutionary pruning mechanism is used to train a nodule detection deep learning model on the most informative images from a publicly available lung nodule X-ray dataset.
arXiv Detail & Related papers (2022-01-24T10:08:07Z) - CoRSAI: A System for Robust Interpretation of CT Scans of COVID-19
Patients Using Deep Learning [133.87426554801252]
We adopted an approach based on using an ensemble of deep convolutionalneural networks for segmentation of lung CT scans.
Using our models we are able to segment the lesions, evaluatepatients dynamics, estimate relative volume of lungs affected by lesions and evaluate the lung damage stage.
arXiv Detail & Related papers (2021-05-25T12:06:55Z) - Development of a Multi-Task Learning V-Net for Pulmonary Lobar
Segmentation on Computed Tomography and Application to Diseased Lungs [0.19573380763700707]
Diseased lung regions often produce high-density zones on CT images, limiting an algorithm's execution to specify damaged lobes.
This impact motivated developing an improved machine learning method to segment lung lobes.
The approach can be readily adopted in the clinical setting as a robust tool for radiologists.
arXiv Detail & Related papers (2021-05-11T17:10:25Z) - M3Lung-Sys: A Deep Learning System for Multi-Class Lung Pneumonia
Screening from CT Imaging [85.00066186644466]
We propose a Multi-task Multi-slice Deep Learning System (M3Lung-Sys) for multi-class lung pneumonia screening from CT imaging.
In addition to distinguish COVID-19 from Healthy, H1N1, and CAP cases, our M 3 Lung-Sys also be able to locate the areas of relevant lesions.
arXiv Detail & Related papers (2020-10-07T06:22:24Z) - Deep Learning for Automatic Pneumonia Detection [72.55423549641714]
Pneumonia is the leading cause of death among young children and one of the top mortality causes worldwide.
Computer-aided diagnosis systems showed the potential for improving diagnostic accuracy.
We develop the computational approach for pneumonia regions detection based on single-shot detectors, squeeze-and-excitation deep convolution neural networks, augmentations and multi-task learning.
arXiv Detail & Related papers (2020-05-28T10:54:34Z) - Predicting COVID-19 Pneumonia Severity on Chest X-ray with Deep Learning [57.00601760750389]
We present a severity score prediction model for COVID-19 pneumonia for frontal chest X-ray images.
Such a tool can gauge severity of COVID-19 lung infections that can be used for escalation or de-escalation of care.
arXiv Detail & Related papers (2020-05-24T23:13:16Z) - Synergistic Learning of Lung Lobe Segmentation and Hierarchical
Multi-Instance Classification for Automated Severity Assessment of COVID-19
in CT Images [61.862364277007934]
We propose a synergistic learning framework for automated severity assessment of COVID-19 in 3D CT images.
A multi-task deep network (called M$2$UNet) is then developed to assess the severity of COVID-19 patients.
Our M$2$UNet consists of a patch-level encoder, a segmentation sub-network for lung lobe segmentation, and a classification sub-network for severity assessment.
arXiv Detail & Related papers (2020-05-08T03:16:15Z) - Attention U-Net Based Adversarial Architectures for Chest X-ray Lung
Segmentation [0.0]
We present a novel deep learning approach for lung segmentation, a basic, but arduous task in the diagnostic pipeline.
Our method uses state-of-the-art fully convolutional neural networks in conjunction with an adversarial critic model.
It generalized well to CXR images of unseen datasets with different patient profiles, achieving a final DSCR of 97.5% on the JSRT dataset.
arXiv Detail & Related papers (2020-03-23T14:45:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.