論文の概要: Affect-Conditioned Image Generation
- arxiv url: http://arxiv.org/abs/2302.09742v1
- Date: Mon, 20 Feb 2023 03:44:04 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-21 16:45:15.054094
- Title: Affect-Conditioned Image Generation
- Title(参考訳): 情動条件付き画像生成
- Authors: Francisco Ibarrola, Rohan Lulham and Kazjon Grace
- Abstract要約: 本稿では,心理学的に検証された3成分アプローチを用いて,所望の感情によって条件付けられた画像を生成する手法を提案する。
まず、セマンティック埋め込みからテキストや画像の影響内容を推定するためにニューラルネットワークをトレーニングし、それを様々な生成モデルを制御するためにどのように使用できるかを実証する。
- 参考スコア(独自算出の注目度): 0.9668407688201357
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In creativity support and computational co-creativity contexts, the task of
discovering appropriate prompts for use with text-to-image generative models
remains difficult. In many cases the creator wishes to evoke a certain
impression with the image, but the task of conferring that succinctly in a text
prompt poses a challenge: affective language is nuanced, complex, and
model-specific. In this work we introduce a method for generating images
conditioned on desired affect, quantified using a psychometrically validated
three-component approach, that can be combined with conditioning on text
descriptions. We first train a neural network for estimating the affect content
of text and images from semantic embeddings, and then demonstrate how this can
be used to exert control over a variety of generative models. We show examples
of how affect modifies the outputs, provide quantitative and qualitative
analysis of its capabilities, and discuss possible extensions and use cases.
- Abstract(参考訳): クリエイティビティ支援と計算共同創造性コンテキストでは、テキストから画像への生成モデルで使用する適切なプロンプトを見つける作業は依然として困難である。
多くの場合、作者はイメージにある種の印象を与えたいがるが、テキストで簡潔に表現するタスクは、課題を提起する: 情緒的言語は、ニュアンスがあり、複雑で、モデル特有のものである。
本稿では,テキスト記述の条件付けと組み合わせた心理計測的検証3成分法を用いて,所望の情動に基づく画像を生成する手法を提案する。
まず、セマンティック埋め込みからテキストや画像の影響内容を推定するためにニューラルネットワークをトレーニングし、それを様々な生成モデルを制御するためにどのように使用できるかを実証する。
本研究では, 出力の変化に対する影響の例を示し, 定量的かつ質的な分析を行い, 拡張可能性やユースケースについて議論する。
関連論文リスト
- Conditional Text-to-Image Generation with Reference Guidance [81.99538302576302]
本稿では,拡散モデルを生成するために,特定の対象の視覚的ガイダンスを提供する画像の追加条件を用いて検討する。
我々は、異なる参照を取る能力を持つ安定拡散モデルを効率的に支持する、小規模のエキスパートプラグインを複数開発する。
専門的なプラグインは、すべてのタスクにおいて既存のメソッドよりも優れた結果を示し、それぞれ28.55Mのトレーニング可能なパラメータしか含まない。
論文 参考訳(メタデータ) (2024-11-22T21:38:51Z) - Contrastive Prompts Improve Disentanglement in Text-to-Image Diffusion
Models [68.47333676663312]
テキスト・ツー・イメージ・モデルにおける画像要素のアンタングル化に有効な分類器フリーガイダンスの簡単な修正法を示す。
提案手法のキーとなる考え方は、最小限のトークンで異なる2つのプロンプトを持つ意図された要因を特徴づけることである。
我々は,(1)オブジェクトクラスで訓練されたドメイン固有拡散モデル,(2)テキスト・画像生成のための連続的なリグライクな制御,(3)ゼロショット画像エディタの性能向上の3つのシナリオにおいて,その利点を説明する。
論文 参考訳(メタデータ) (2024-02-21T03:01:17Z) - Hypernymy Understanding Evaluation of Text-to-Image Models via WordNet
Hierarchy [12.82992353036576]
我々は、textithypernymy$や単語間の"is-a"関係を理解するために、人気のあるテキスト・画像モデルの有用性を測定する。
私たちのメトリクスが、一般的なテキスト・ツー・イメージモデルの個々の長所と短所をよりよく理解する上で、どのように役立つかを示します。
論文 参考訳(メタデータ) (2023-10-13T16:53:25Z) - Paste, Inpaint and Harmonize via Denoising: Subject-Driven Image Editing
with Pre-Trained Diffusion Model [22.975965453227477]
textitPaste, Inpaint, Harmonize と呼ばれる新しいフレームワークをDenoising (PhD) を通じて導入する。
本実験では,主観的画像編集作業にPhDを適用し,参照対象のテキスト駆動シーン生成を探索する。
論文 参考訳(メタデータ) (2023-06-13T07:43:10Z) - Composition and Deformance: Measuring Imageability with a Text-to-Image
Model [8.008504325316327]
生成した画像を用いて、単一英語の単語と接続されたテキストの可視性を測定する手法を提案する。
提案手法と個人単語の人的判断との間には高い相関関係が認められた。
本研究は,テキスト・ツー・イメージ・モデルにおけるモデルトレーニングの可能性と,構成性の研究に与える影響について論じる。
論文 参考訳(メタデータ) (2023-06-05T18:22:23Z) - Attend-and-Excite: Attention-Based Semantic Guidance for Text-to-Image
Diffusion Models [103.61066310897928]
最近のテキスト・ツー・イメージ生成モデルは、ターゲットのテキスト・プロンプトによって導かれる多様な創造的な画像を生成する非例外的な能力を実証している。
革命的ではあるが、現在の最先端拡散モデルは、与えられたテキストプロンプトのセマンティクスを完全に伝達するイメージの生成に失敗する可能性がある。
本研究では, 一般に公開されている安定拡散モデルを分析し, 破滅的無視の有無を評価し, そのモデルが入力プロンプトから1つ以上の被写体を生成するのに失敗した場合について検討する。
提案するジェネレーティブ・セマンティック・ナーシング(GSN)の概念は、推論時間中にハエの生殖過程に介入し、忠実性を改善するものである。
論文 参考訳(メタデータ) (2023-01-31T18:10:38Z) - Plug-and-Play Diffusion Features for Text-Driven Image-to-Image
Translation [10.39028769374367]
本稿では,画像間翻訳の領域にテキスト・ツー・イメージ合成を取り入れた新しいフレームワークを提案する。
本手法は,事前学習したテキスト・画像拡散モデルのパワーを利用して,対象のテキストに適合する新たな画像を生成する。
論文 参考訳(メタデータ) (2022-11-22T20:39:18Z) - Make-A-Scene: Scene-Based Text-to-Image Generation with Human Priors [58.71128866226768]
近年のテキスト・ツー・イメージ生成手法は、生成した画像の忠実度とテキスト関連性を漸進的に改善している。
i)シーンの形式でテキストを補完する単純な制御機構を実現することで,これらのギャップに対処する新しいテキスト・ツー・イメージ手法を提案する。
このモデルにより,512×512ピクセルの解像度で高忠実度画像を生成することができる。
論文 参考訳(メタデータ) (2022-03-24T15:44:50Z) - Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic [72.60554897161948]
最近のテキストと画像のマッチングモデルは、未修正画像と文の大きなコーパスに対してコントラスト学習を適用している。
本研究では、そのようなモデルを用いて、推論時に画像が与えられた記述テキストを生成する。
結果として得られたキャプションは、教師付きキャプション法によるキャプションよりもはるかに制限を受けない。
論文 参考訳(メタデータ) (2021-11-29T11:01:49Z) - Improving Generation and Evaluation of Visual Stories via Semantic
Consistency [72.00815192668193]
一連の自然言語キャプションが与えられた場合、エージェントはキャプションに対応する一連の画像を生成する必要がある。
それまでの作業では、このタスクで合成テキスト・画像モデルより優れた繰り返し生成モデルを導入してきた。
従来のモデリング手法には、デュアルラーニングフレームワークの追加など、いくつかの改善点を提示する。
論文 参考訳(メタデータ) (2021-05-20T20:42:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。