論文の概要: Conditional Text-to-Image Generation with Reference Guidance
- arxiv url: http://arxiv.org/abs/2411.16713v1
- Date: Fri, 22 Nov 2024 21:38:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-27 13:35:47.143437
- Title: Conditional Text-to-Image Generation with Reference Guidance
- Title(参考訳): 参照誘導による条件付きテキスト・画像生成
- Authors: Taewook Kim, Ze Wang, Zhengyuan Yang, Jiang Wang, Lijuan Wang, Zicheng Liu, Qiang Qiu,
- Abstract要約: 本稿では,拡散モデルを生成するために,特定の対象の視覚的ガイダンスを提供する画像の追加条件を用いて検討する。
我々は、異なる参照を取る能力を持つ安定拡散モデルを効率的に支持する、小規模のエキスパートプラグインを複数開発する。
専門的なプラグインは、すべてのタスクにおいて既存のメソッドよりも優れた結果を示し、それぞれ28.55Mのトレーニング可能なパラメータしか含まない。
- 参考スコア(独自算出の注目度): 81.99538302576302
- License:
- Abstract: Text-to-image diffusion models have demonstrated tremendous success in synthesizing visually stunning images given textual instructions. Despite remarkable progress in creating high-fidelity visuals, text-to-image models can still struggle with precisely rendering subjects, such as text spelling. To address this challenge, this paper explores using additional conditions of an image that provides visual guidance of the particular subjects for diffusion models to generate. In addition, this reference condition empowers the model to be conditioned in ways that the vocabularies of the text tokenizer cannot adequately represent, and further extends the model's generalization to novel capabilities such as generating non-English text spellings. We develop several small-scale expert plugins that efficiently endow a Stable Diffusion model with the capability to take different references. Each plugin is trained with auxiliary networks and loss functions customized for applications such as English scene-text generation, multi-lingual scene-text generation, and logo-image generation. Our expert plugins demonstrate superior results than the existing methods on all tasks, each containing only 28.55M trainable parameters.
- Abstract(参考訳): テキスト・ツー・イメージ拡散モデルは、テキスト・インストラクションによって視覚的に素晴らしい画像を合成することに成功した。
高忠実度ヴィジュアライゼーションの顕著な進歩にもかかわらず、テキスト・ツー・イメージのモデルは、テキストスペルなどの対象を正確にレンダリングするのに依然として苦労することがある。
この課題に対処するために、拡散モデルを生成するために、特定の対象の視覚的ガイダンスを提供する画像の追加条件を用いて検討する。
さらに、この参照条件により、テキストトークンの語彙が適切に表現できないような方法でモデルに条件付けを施すとともに、非英語のスペル生成などの新しい機能へのモデルの一般化をさらに拡張する。
我々は、異なる参照を取る能力を持つ安定拡散モデルを効率的に支持する、小規模のエキスパートプラグインを複数開発する。
各プラグインは、英語シーンテキスト生成、多言語シーンテキスト生成、ロゴイメージ生成などのアプリケーション用にカスタマイズされた補助ネットワークと損失関数で訓練される。
専門的なプラグインは、すべてのタスクにおいて既存のメソッドよりも優れた結果を示し、それぞれ28.55万のトレーニング可能なパラメータしか含まない。
関連論文リスト
- ARTIST: Improving the Generation of Text-rich Images with Disentangled Diffusion Models [52.23899502520261]
テキスト構造学習に焦点を当てたARTISTという新しいフレームワークを提案する。
我々は、事前訓練されたテキスト構造モデルからテキスト構造情報を同化できるように、視覚拡散モデルを微調整する。
MARIO-Evalベンチマークの実証結果は,提案手法の有効性を裏付けるものであり,様々な指標において最大15%の改善が見られた。
論文 参考訳(メタデータ) (2024-06-17T19:31:24Z) - TextCraftor: Your Text Encoder Can be Image Quality Controller [65.27457900325462]
拡散に基づくテキスト・画像生成モデル(例えば、安定拡散)は、コンテンツ生成の分野に革命をもたらした。
本研究では,テキスト・ツー・イメージ拡散モデルの性能を向上させるための微調整手法であるTextCraftorを提案する。
論文 参考訳(メタデータ) (2024-03-27T19:52:55Z) - Seek for Incantations: Towards Accurate Text-to-Image Diffusion
Synthesis through Prompt Engineering [118.53208190209517]
本稿では,拡散モデルの適切なテキスト記述を即時学習により学習するフレームワークを提案する。
提案手法は,入力されたテキストと生成された画像とのマッチングを改善するためのプロンプトを効果的に学習することができる。
論文 参考訳(メタデータ) (2024-01-12T03:46:29Z) - UDiffText: A Unified Framework for High-quality Text Synthesis in
Arbitrary Images via Character-aware Diffusion Models [25.219960711604728]
本稿では,事前学習した拡散モデルを用いたテキスト画像生成手法を提案する。
我々のアプローチは、オリジナルのCLIPエンコーダを置き換える軽量文字レベルテキストエンコーダの設計と訓練である。
推論段階の精細化プロセスを用いることで、任意に与えられた画像のテキストを合成する際に、顕著に高いシーケンス精度を実現する。
論文 参考訳(メタデータ) (2023-12-08T07:47:46Z) - SUR-adapter: Enhancing Text-to-Image Pre-trained Diffusion Models with
Large Language Models [56.88192537044364]
本研究では,事前学習拡散モデルに対するセマンティック・アダプタ (SUR-adapter) と呼ばれる簡易なパラメータ効率の良い微調整手法を提案する。
ユーザエクスペリエンスの向上により,テキストから画像への拡散モデルの使いやすさが向上する。
論文 参考訳(メタデータ) (2023-05-09T05:48:38Z) - GlyphDraw: Seamlessly Rendering Text with Intricate Spatial Structures
in Text-to-Image Generation [18.396131717250793]
GlyphDrawは、画像生成モデルに特定の言語に対して、テキストにコヒーレントに埋め込まれた画像を生成する能力を持たせることを目的とした、一般的な学習フレームワークである。
提案手法は,プロンプトのように正確な言語文字を生成するだけでなく,生成したテキストを背景にシームレスにブレンドする。
論文 参考訳(メタデータ) (2023-03-31T08:06:33Z) - Unified Multi-Modal Latent Diffusion for Joint Subject and Text
Conditional Image Generation [63.061871048769596]
本稿では, 特定対象を含む画像と共同テキストを入力シーケンスとして用いた, Unified Multi-Modal Latent Diffusion (UMM-Diffusion) を提案する。
より具体的には、入力テキストと画像の両方を1つの統一マルチモーダル潜在空間に符号化する。
入力テキストと画像の両面から複雑な意味を持つ高品質な画像を生成することができる。
論文 参考訳(メタデータ) (2023-03-16T13:50:20Z) - Plug-and-Play Diffusion Features for Text-Driven Image-to-Image
Translation [10.39028769374367]
本稿では,画像間翻訳の領域にテキスト・ツー・イメージ合成を取り入れた新しいフレームワークを提案する。
本手法は,事前学習したテキスト・画像拡散モデルのパワーを利用して,対象のテキストに適合する新たな画像を生成する。
論文 参考訳(メタデータ) (2022-11-22T20:39:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。