論文の概要: ENInst: Enhancing Weakly-supervised Low-shot Instance Segmentation
- arxiv url: http://arxiv.org/abs/2302.09765v3
- Date: Mon, 31 Jul 2023 03:05:22 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-01 23:36:13.111312
- Title: ENInst: Enhancing Weakly-supervised Low-shot Instance Segmentation
- Title(参考訳): ENInst: 弱教師付きローショットインスタンスセグメンテーションの強化
- Authors: Moon Ye-Bin, Dongmin Choi, Yongjin Kwon, Junsik Kim, Tae-Hyun Oh
- Abstract要約: 我々は,新しいクラスを効果的に扱うためのアノテーション効率のよい訓練手法である,弱教師付きローショットインスタンスセグメンテーションに対処する。
私たちのENInstは、既存の完全に教師されたいくつかのショットモデルに匹敵するパフォーマンスを達成する上で、7.5倍の効率を実現しています。
- 参考スコア(独自算出の注目度): 23.621454800084724
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We address a weakly-supervised low-shot instance segmentation, an
annotation-efficient training method to deal with novel classes effectively.
Since it is an under-explored problem, we first investigate the difficulty of
the problem and identify the performance bottleneck by conducting systematic
analyses of model components and individual sub-tasks with a simple baseline
model. Based on the analyses, we propose ENInst with sub-task enhancement
methods: instance-wise mask refinement for enhancing pixel localization quality
and novel classifier composition for improving classification accuracy. Our
proposed method lifts the overall performance by enhancing the performance of
each sub-task. We demonstrate that our ENInst is 7.5 times more efficient in
achieving comparable performance to the existing fully-supervised few-shot
models and even outperforms them at times.
- Abstract(参考訳): 我々は,新しいクラスを効果的に扱うためのアノテーション効率のよい訓練手法である,弱教師付きローショットインスタンスセグメンテーションに対処する。
まず,問題の難易度を調査し,単純なベースラインモデルを用いてモデルコンポーネントと個々のサブタスクの系統的分析を行い,性能ボトルネックを特定する。
そこで本研究では,画素の局在性向上のためのインスタンスワイズマスク改良法と,分類精度向上のための新しい分類器構成法を提案する。
提案手法は,各サブタスクの性能を向上させることで全体の性能を高める。
ENInstは、既存の完全に教師されたいくつかのショットモデルに匹敵するパフォーマンスを達成する上で、7.5倍の効率を示します。
関連論文リスト
- Minimizing Embedding Distortion for Robust Out-of-Distribution Performance [1.0923877073891446]
我々は、タスクの微調整プロセスに組み込むことができる「類似性損失」と呼ばれる新しいアプローチを導入する。
衛星画像における画像分類と顔認識の2つの課題について検討した。
論文 参考訳(メタデータ) (2024-09-11T19:22:52Z) - Investigating Self-Supervised Methods for Label-Efficient Learning [27.029542823306866]
低撮影能力のためのコントラスト学習、クラスタリング、マスク付き画像モデリングなど、さまざまな自己教師付きプレテキストタスクについて検討する。
マスク画像モデリングとクラスタリングの両方をプリテキストタスクとして含むフレームワークを導入する。
実規模データセット上でモデルをテストした場合,マルチクラス分類,マルチラベル分類,セマンティックセマンティックセグメンテーションにおける性能向上を示す。
論文 参考訳(メタデータ) (2024-06-25T10:56:03Z) - Weakly-Supervised Cross-Domain Segmentation of Electron Microscopy with Sparse Point Annotation [1.124958340749622]
カウント,検出,セグメンテーションタスク間の相関を利用したマルチタスク学習フレームワークを提案する。
ラベル拡張のためのクロスポジションカット・アンド・ペーストを開発し,エントロピーに基づく擬似ラベル選択を行う。
提案手法は, UDA法を著しく上回り, 教師付き手法と同等の性能を発揮する。
論文 参考訳(メタデータ) (2024-03-31T12:22:23Z) - Fast Hierarchical Learning for Few-Shot Object Detection [57.024072600597464]
転送学習アプローチは、最近、数ショット検出タスクで有望な結果を得た。
これらのアプローチは、ベース検出器の微調整による破滅的な忘れ込みの問題に悩まされる。
この作業における上記の問題に対処する。
論文 参考訳(メタデータ) (2022-10-10T20:31:19Z) - Generalization Properties of Retrieval-based Models [50.35325326050263]
検索ベースの機械学習手法は、幅広い問題で成功をおさめた。
これらのモデルの約束を示す文献が増えているにもかかわらず、そのようなモデルの理論的基盤はいまだに解明されていない。
本稿では,その一般化能力を特徴付けるために,検索ベースモデルの形式的処理を行う。
論文 参考訳(メタデータ) (2022-10-06T00:33:01Z) - Challenges in leveraging GANs for few-shot data augmentation [16.679224813570734]
本稿では,GANをベースとした小ショットデータ拡張を,小ショット分類性能を向上させる手法として活用することを検討する。
我々は、純粋に監督された体制の下で、このような生成モデルを訓練することの難しさに関連する問題を特定する。
これらの問題に対処するための,より実践的な方法として,半教師付き微調整手法を提案する。
論文 参考訳(メタデータ) (2022-03-30T20:36:49Z) - Few-shot Action Recognition with Prototype-centered Attentive Learning [88.10852114988829]
2つの新しい構成要素からなるプロトタイプ中心型注意学習(pal)モデル。
まず,従来のクエリ中心学習目標を補完するために,プロトタイプ中心のコントラスト学習損失を導入する。
第二に、PALは注意深いハイブリッド学習機構を統合しており、アウトレーヤの負の影響を最小限に抑えることができる。
論文 参考訳(メタデータ) (2021-01-20T11:48:12Z) - Few-shot Classification via Adaptive Attention [93.06105498633492]
ごく少数の参照サンプルに基づいて,クエリサンプル表現を最適化し,高速に適応する新しい数ショット学習手法を提案する。
実験で実証したように,提案モデルでは,様々なベンチマーク数ショット分類と微粒化認識データセットを用いて,最先端の分類結果を達成している。
論文 参考訳(メタデータ) (2020-08-06T05:52:59Z) - Deep Semi-supervised Knowledge Distillation for Overlapping Cervical
Cell Instance Segmentation [54.49894381464853]
本稿では, ラベル付きデータとラベルなしデータの両方を, 知識蒸留による精度向上に活用することを提案する。
摂動に敏感なサンプルマイニングを用いたマスク誘導型平均教師フレームワークを提案する。
実験の結果,ラベル付きデータのみから学習した教師付き手法と比較して,提案手法は性能を著しく向上することがわかった。
論文 参考訳(メタデータ) (2020-07-21T13:27:09Z) - Hierarchical and Efficient Learning for Person Re-Identification [19.172946887940874]
階層的大域的, 部分的, 回復的特徴を複数の損失結合の監督の下で学習する, 階層的, 効率的なネットワーク(HENet)を提案する。
また,RPE (Random Polygon Erasing) と呼ばれる新しいデータセット拡張手法を提案する。
論文 参考訳(メタデータ) (2020-05-18T15:45:25Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
本稿では,第1ステージのMatching-FCOSネットワークと第2ステージのStructure-Aware Relation Moduleからなる2段階モデルを提案する。
また,検出性能を効果的に向上する新たなトレーニング戦略を提案する。
提案手法は,複数のデータセット上で一貫した最先端のワンショット性能を上回る。
論文 参考訳(メタデータ) (2020-05-08T01:59:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。