論文の概要: Weakly-Supervised Cross-Domain Segmentation of Electron Microscopy with Sparse Point Annotation
- arxiv url: http://arxiv.org/abs/2404.00667v1
- Date: Sun, 31 Mar 2024 12:22:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 02:20:51.117107
- Title: Weakly-Supervised Cross-Domain Segmentation of Electron Microscopy with Sparse Point Annotation
- Title(参考訳): 疎点アノテートによる電子顕微鏡の弱改良されたクロスドメインセグメンテーション
- Authors: Dafei Qiu, Shan Xiong, Jiajin Yi, Jialin Peng,
- Abstract要約: カウント,検出,セグメンテーションタスク間の相関を利用したマルチタスク学習フレームワークを提案する。
ラベル拡張のためのクロスポジションカット・アンド・ペーストを開発し,エントロピーに基づく擬似ラベル選択を行う。
提案手法は, UDA法を著しく上回り, 教師付き手法と同等の性能を発揮する。
- 参考スコア(独自算出の注目度): 1.124958340749622
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate segmentation of organelle instances from electron microscopy (EM) images plays an essential role in many neuroscience researches. However, practical scenarios usually suffer from high annotation costs, label scarcity, and large domain diversity. While unsupervised domain adaptation (UDA) that assumes no annotation effort on the target data is promising to alleviate these challenges, its performance on complicated segmentation tasks is still far from practical usage. To address these issues, we investigate a highly annotation-efficient weak supervision, which assumes only sparse center-points on a small subset of object instances in the target training images. To achieve accurate segmentation with partial point annotations, we introduce instance counting and center detection as auxiliary tasks and design a multitask learning framework to leverage correlations among the counting, detection, and segmentation, which are all tasks with partial or no supervision. Building upon the different domain-invariances of the three tasks, we enforce counting estimation with a novel soft consistency loss as a global prior for center detection, which further guides the per-pixel segmentation. To further compensate for annotation sparsity, we develop a cross-position cut-and-paste for label augmentation and an entropy-based pseudo-label selection. The experimental results highlight that, by simply using extremely weak annotation, e.g., 15\% sparse points, for model training, the proposed model is capable of significantly outperforming UDA methods and produces comparable performance as the supervised counterpart. The high robustness of our model shown in the validations and the low requirement of expert knowledge for sparse point annotation further improve the potential application value of our model.
- Abstract(参考訳): 電子顕微鏡(Electron Microscopy, EM)画像からのオルガネラインスタンスの正確なセグメンテーションは多くの神経科学研究において重要な役割を担っている。
しかし、現実的なシナリオは通常、高いアノテーションコスト、ラベルの不足、大きなドメインの多様性に悩まされます。
対象データに対するアノテーションの取り組みを前提としない非教師付きドメイン適応(UDA)は、これらの課題を軽減することを約束しているが、複雑なセグメンテーションタスクのパフォーマンスは、まだ実用には程遠い。
これらの課題に対処するために,対象のトレーニング画像中のオブジェクトインスタンスの小さなサブセットに対して,疎い中心点のみを仮定する,高アノテーション効率の弱い監視手法について検討する。
部分点アノテーションによる正確なセグメンテーションを実現するために,インスタンスカウントとセンター検出を補助的タスクとして導入し,部分的あるいは非監督的なタスクであるカウント,検出,セグメンテーションの相関を利用するマルチタスク学習フレームワークを設計する。
3つのタスクの異なるドメイン不変性に基づいて、中心検出のグローバルな先行として、新しいソフト一貫性損失によるカウント推定を強制し、ピクセルごとのセグメンテーションをさらに導く。
アノテーションの間隔を補うため,ラベル拡張のためのクロスポジションカット・アンド・ペーストと,エントロピーに基づく擬似ラベル選択を開発した。
実験結果から, モデルトレーニングにおいて, 極めて弱いアノテーション, 例えば15 % のスパースポイントを用いることで, UDA 法を著しく上回り, 教師付き手法と同等の性能が得られることがわかった。
モデルの高ロバスト性とスパースポイントアノテーションのエキスパート知識の低要求により,モデルの潜在的な適用価値がさらに向上する。
関連論文リスト
- Better Sampling, towards Better End-to-end Small Object Detection [7.7473020808686694]
限られた特性と高密度と相互重なり合いのため、小さな物体検出は不満足なままである。
エンド・ツー・エンド・フレームワークにおけるサンプリングの強化手法を提案する。
我々のモデルは、VisDroneデータセット上での最先端(SOTA)よりも平均精度(AP)が2.9%向上することを示す。
論文 参考訳(メタデータ) (2024-05-17T04:37:44Z) - Few-Shot Learning for Annotation-Efficient Nucleus Instance Segmentation [50.407071700154674]
少数ショット学習(FSL)の観点から、アノテーション効率の良い核インスタンスセグメンテーションを定式化することを提案する。
我々の研究は、計算病理学の隆盛とともに、多くの完全注釈付きデータセットが一般に公開されていることに動機づけられた。
いくつかの公開データセットに対する大規模な実験は、SGFSISが他のアノテーション効率のよい学習ベースラインより優れていることを示している。
論文 参考訳(メタデータ) (2024-02-26T03:49:18Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
本稿では,粗粒度パイプラインと特徴模倣学習に基づく小型物体検出に適した2段階フレームワークを提案する。
CFINetは、大規模な小さなオブジェクト検出ベンチマークであるSODA-DとSODA-Aで最先端の性能を達成する。
論文 参考訳(メタデータ) (2023-08-18T13:13:09Z) - Few-Shot Point Cloud Semantic Segmentation via Contrastive
Self-Supervision and Multi-Resolution Attention [6.350163959194903]
数発の学習事前学習のための対照的な自己超越フレームワークを提案する。
具体的には、3Dポイントクラウドのための学習可能な拡張子を用いて、新しいコントラスト学習アプローチを実装した。
最接近点と最遠点の両方を用いて多分解能アテンションモジュールを開発し,局所点と大域点の情報をより効率的に抽出する。
論文 参考訳(メタデータ) (2023-02-21T07:59:31Z) - Domain Adaptive Segmentation of Electron Microscopy with Sparse Point
Annotations [2.5137859989323537]
競争性能に優れたアノテーション効率のアプローチを開発する。
弱教師付きドメイン適応(WDA)に極端にスパースで弱いアノテーションのタイプで焦点を当てる。
15%のポイントアノテーションしか持たないモデルでは、教師付きモデルと同等のパフォーマンスが得られることを示す。
論文 参考訳(メタデータ) (2022-10-24T10:50:37Z) - Active Pointly-Supervised Instance Segmentation [106.38955769817747]
アクティブポイント制御型インスタンスセグメンテーション(APIS)という,経済的なアクティブな学習環境を提案する。
APISはボックスレベルのアノテーションから始まり、ボックス内のポイントを反復的にサンプリングし、オブジェクトに落ちているかどうかを問う。
これらの戦略で開発されたモデルは、挑戦的なMS-COCOデータセットに対して一貫したパフォーマンス向上をもたらす。
論文 参考訳(メタデータ) (2022-07-23T11:25:24Z) - WSSOD: A New Pipeline for Weakly- and Semi-Supervised Object Detection [75.80075054706079]
弱機能および半教師付きオブジェクト検出フレームワーク(WSSOD)を提案する。
エージェント検出器は、まず関節データセット上でトレーニングされ、弱注釈画像上で擬似境界ボックスを予測するために使用される。
提案フレームワークはPASCAL-VOC と MSCOCO のベンチマークで顕著な性能を示し,完全教師付き環境で得られたものと同等の性能を達成している。
論文 参考訳(メタデータ) (2021-05-21T11:58:50Z) - Towards Robust Partially Supervised Multi-Structure Medical Image
Segmentation on Small-Scale Data [123.03252888189546]
データ不足下における部分教師付き学習(PSL)における方法論的ギャップを埋めるために,不確実性下でのビシナルラベル(VLUU)を提案する。
マルチタスク学習とヴィジナルリスク最小化によって動機づけられたVLUUは、ビジナルラベルを生成することによって、部分的に教師付き問題を完全な教師付き問題に変換する。
本研究は,ラベル効率の高い深層学習における新たな研究の方向性を示唆するものである。
論文 参考訳(メタデータ) (2020-11-28T16:31:00Z) - A Weakly-Supervised Semantic Segmentation Approach based on the Centroid
Loss: Application to Quality Control and Inspection [6.101839518775968]
本稿では,新しい損失関数を用いた弱教師付きセマンティックセマンティックセマンティクス手法の提案と評価を行う。
アプローチのパフォーマンスは,2つの業界関連ケーススタディのデータセットに対して評価される。
論文 参考訳(メタデータ) (2020-10-26T09:08:21Z) - Weakly Supervised Deep Nuclei Segmentation Using Partial Points
Annotation in Histopathology Images [51.893494939675314]
本稿では,部分点アノテーションに基づく弱教師付きセグメンテーションフレームワークを提案する。
本手法は, 完全教師付き手法や最先端手法と比較して, 競争性能を向上できることを示す。
論文 参考訳(メタデータ) (2020-07-10T15:41:29Z) - Adversarial-Prediction Guided Multi-task Adaptation for Semantic
Segmentation of Electron Microscopy Images [5.027571997864707]
本稿では,ラベルのない新規なターゲットドメイン上で使用するための,よく訓練されたモデルの適応を学習するために,逆予測誘導マルチタスクネットワークを導入する。
対象ドメインにラベルが存在しないため、ソースドメイン上の教師付きセグメンテーションだけでなく、対象データの教師なし再構築のための符号化表現も学習する。
論文 参考訳(メタデータ) (2020-04-05T09:18:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。