Variation Enhanced Attacks Against RRAM-based Neuromorphic Computing
System
- URL: http://arxiv.org/abs/2302.09902v1
- Date: Mon, 20 Feb 2023 10:57:41 GMT
- Title: Variation Enhanced Attacks Against RRAM-based Neuromorphic Computing
System
- Authors: Hao Lv, Bing Li, Lei Zhang, Cheng Liu, Ying Wang
- Abstract summary: We propose two types of hardware-aware attack methods with respect to different attack scenarios and objectives.
The first is adversarial attack, VADER, which perturbs the input samples to mislead the prediction of neural networks.
The second is fault injection attack, EFI, which perturbs the network parameter space such that a specified sample will be classified to a target label.
- Score: 14.562718993542964
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The RRAM-based neuromorphic computing system has amassed explosive interests
for its superior data processing capability and energy efficiency than
traditional architectures, and thus being widely used in many data-centric
applications. The reliability and security issues of the NCS therefore become
an essential problem. In this paper, we systematically investigated the
adversarial threats to the RRAM-based NCS and observed that the RRAM hardware
feature can be leveraged to strengthen the attack effect, which has not been
granted sufficient attention by previous algorithmic attack methods. Thus, we
proposed two types of hardware-aware attack methods with respect to different
attack scenarios and objectives. The first is adversarial attack, VADER, which
perturbs the input samples to mislead the prediction of neural networks. The
second is fault injection attack, EFI, which perturbs the network parameter
space such that a specified sample will be classified to a target label, while
maintaining the prediction accuracy on other samples. Both attack methods
leverage the RRAM properties to improve the performance compared with the
conventional attack methods. Experimental results show that our hardware-aware
attack methods can achieve nearly 100% attack success rate with extremely low
operational cost, while maintaining the attack stealthiness.
Related papers
- Rethinking Targeted Adversarial Attacks For Neural Machine Translation [56.10484905098989]
This paper presents a new setting for NMT targeted adversarial attacks that could lead to reliable attacking results.
Under the new setting, it then proposes a Targeted Word Gradient adversarial Attack (TWGA) method to craft adversarial examples.
Experimental results demonstrate that our proposed setting could provide faithful attacking results for targeted adversarial attacks on NMT systems.
arXiv Detail & Related papers (2024-07-07T10:16:06Z) - Meta Invariance Defense Towards Generalizable Robustness to Unknown Adversarial Attacks [62.036798488144306]
Current defense mainly focuses on the known attacks, but the adversarial robustness to the unknown attacks is seriously overlooked.
We propose an attack-agnostic defense method named Meta Invariance Defense (MID)
We show that MID simultaneously achieves robustness to the imperceptible adversarial perturbations in high-level image classification and attack-suppression in low-level robust image regeneration.
arXiv Detail & Related papers (2024-04-04T10:10:38Z) - Review-Incorporated Model-Agnostic Profile Injection Attacks on
Recommender Systems [24.60223863559958]
We propose a novel attack framework named R-Trojan, which formulates the attack objectives as an optimization problem and adopts a tailored transformer-based generative adversarial network (GAN) to solve it.
Experiments on real-world datasets demonstrate that R-Trojan greatly outperforms state-of-the-art attack methods on various victim RSs under black-box settings.
arXiv Detail & Related papers (2024-02-14T08:56:41Z) - Towards Adversarial Realism and Robust Learning for IoT Intrusion
Detection and Classification [0.0]
The Internet of Things (IoT) faces tremendous security challenges.
The increasing threat posed by adversarial attacks restates the need for reliable defense strategies.
This work describes the types of constraints required for an adversarial cyber-attack example to be realistic.
arXiv Detail & Related papers (2023-01-30T18:00:28Z) - DODEM: DOuble DEfense Mechanism Against Adversarial Attacks Towards
Secure Industrial Internet of Things Analytics [8.697883716452385]
We propose a double defense mechanism to detect and mitigate adversarial attacks in I-IoT environments.
We first detect if there is an adversarial attack on a given sample using novelty detection algorithms.
If there is an attack, adversarial retraining provides a more robust model, while we apply standard training for regular samples.
arXiv Detail & Related papers (2023-01-23T22:10:40Z) - Versatile Weight Attack via Flipping Limited Bits [68.45224286690932]
We study a novel attack paradigm, which modifies model parameters in the deployment stage.
Considering the effectiveness and stealthiness goals, we provide a general formulation to perform the bit-flip based weight attack.
We present two cases of the general formulation with different malicious purposes, i.e., single sample attack (SSA) and triggered samples attack (TSA)
arXiv Detail & Related papers (2022-07-25T03:24:58Z) - Adaptive Feature Alignment for Adversarial Training [56.17654691470554]
CNNs are typically vulnerable to adversarial attacks, which pose a threat to security-sensitive applications.
We propose the adaptive feature alignment (AFA) to generate features of arbitrary attacking strengths.
Our method is trained to automatically align features of arbitrary attacking strength.
arXiv Detail & Related papers (2021-05-31T17:01:05Z) - Targeted Attack against Deep Neural Networks via Flipping Limited Weight
Bits [55.740716446995805]
We study a novel attack paradigm, which modifies model parameters in the deployment stage for malicious purposes.
Our goal is to misclassify a specific sample into a target class without any sample modification.
By utilizing the latest technique in integer programming, we equivalently reformulate this BIP problem as a continuous optimization problem.
arXiv Detail & Related papers (2021-02-21T03:13:27Z) - Adversarial Poisoning Attacks and Defense for General Multi-Class Models
Based On Synthetic Reduced Nearest Neighbors [14.968442560499753]
State-of-the-art machine learning models are vulnerable to data poisoning attacks.
This paper proposes a novel model-free label-flipping attack based on the multi-modality of the data.
Second, a novel defense technique based on the Synthetic Reduced Nearest Neighbor (SRNN) model is proposed.
arXiv Detail & Related papers (2021-02-11T06:55:40Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.