Input-Specific and Universal Adversarial Attack Generation for Spiking Neural Networks in the Spiking Domain
- URL: http://arxiv.org/abs/2505.06299v1
- Date: Wed, 07 May 2025 19:49:18 GMT
- Title: Input-Specific and Universal Adversarial Attack Generation for Spiking Neural Networks in the Spiking Domain
- Authors: Spyridon Raptis, Haralampos-G. Stratigopoulos,
- Abstract summary: An adversarial attack aims at finding a subtle input perturbation to fool the network's decision-making.<n>We propose two novel adversarial attack algorithms for Spiking Neural Networks (SNNs)<n> Experimental results on two widely used neuromorphic vision datasets, NMNIST and IBM DVS Gesture, show that our proposed attacks surpass in all metrics all existing state-of-the-art methods.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As Spiking Neural Networks (SNNs) gain traction across various applications, understanding their security vulnerabilities becomes increasingly important. In this work, we focus on the adversarial attacks, which is perhaps the most concerning threat. An adversarial attack aims at finding a subtle input perturbation to fool the network's decision-making. We propose two novel adversarial attack algorithms for SNNs: an input-specific attack that crafts adversarial samples from specific dataset inputs and a universal attack that generates a reusable patch capable of inducing misclassification across most inputs, thus offering practical feasibility for real-time deployment. The algorithms are gradient-based operating in the spiking domain proving to be effective across different evaluation metrics, such as adversarial accuracy, stealthiness, and generation time. Experimental results on two widely used neuromorphic vision datasets, NMNIST and IBM DVS Gesture, show that our proposed attacks surpass in all metrics all existing state-of-the-art methods. Additionally, we present the first demonstration of adversarial attack generation in the sound domain using the SHD dataset.
Related papers
- Edge-Only Universal Adversarial Attacks in Distributed Learning [49.546479320670464]
In this work, we explore the feasibility of generating universal adversarial attacks when an attacker has access to the edge part of the model only.
Our approach shows that adversaries can induce effective mispredictions in the unknown cloud part by leveraging key features on the edge side.
Our results on ImageNet demonstrate strong attack transferability to the unknown cloud part.
arXiv Detail & Related papers (2024-11-15T11:06:24Z) - Attack Anything: Blind DNNs via Universal Background Adversarial Attack [17.73886733971713]
It has been widely substantiated that deep neural networks (DNNs) are susceptible and vulnerable to adversarial perturbations.
We propose a background adversarial attack framework to attack anything, by which the attack efficacy generalizes well between diverse objects, models, and tasks.
We conduct comprehensive and rigorous experiments in both digital and physical domains across various objects, models, and tasks, demonstrating the effectiveness of attacking anything of the proposed method.
arXiv Detail & Related papers (2024-08-17T12:46:53Z) - Meta Invariance Defense Towards Generalizable Robustness to Unknown Adversarial Attacks [62.036798488144306]
Current defense mainly focuses on the known attacks, but the adversarial robustness to the unknown attacks is seriously overlooked.
We propose an attack-agnostic defense method named Meta Invariance Defense (MID)
We show that MID simultaneously achieves robustness to the imperceptible adversarial perturbations in high-level image classification and attack-suppression in low-level robust image regeneration.
arXiv Detail & Related papers (2024-04-04T10:10:38Z) - A Geometrical Approach to Evaluate the Adversarial Robustness of Deep
Neural Networks [52.09243852066406]
Adversarial Converging Time Score (ACTS) measures the converging time as an adversarial robustness metric.
We validate the effectiveness and generalization of the proposed ACTS metric against different adversarial attacks on the large-scale ImageNet dataset.
arXiv Detail & Related papers (2023-10-10T09:39:38Z) - NetSentry: A Deep Learning Approach to Detecting Incipient Large-scale
Network Attacks [9.194664029847019]
We show how to use Machine Learning for Network Intrusion Detection (NID) in a principled way.
We propose NetSentry, perhaps the first of its kind NIDS that builds on Bi-ALSTM, an original ensemble of sequential neural models.
We demonstrate F1 score gains above 33% over the state-of-the-art, as well as up to 3 times higher rates of detecting attacks such as XSS and web bruteforce.
arXiv Detail & Related papers (2022-02-20T17:41:02Z) - Towards Robust Neural Networks via Orthogonal Diversity [30.77473391842894]
A series of methods represented by the adversarial training and its variants have proven as one of the most effective techniques in enhancing the Deep Neural Networks robustness.
This paper proposes a novel defense that aims at augmenting the model in order to learn features that are adaptive to diverse inputs, including adversarial examples.
In this way, the proposed DIO augments the model and enhances the robustness of DNN itself as the learned features can be corrected by these mutually-orthogonal paths.
arXiv Detail & Related papers (2020-10-23T06:40:56Z) - Double Targeted Universal Adversarial Perturbations [83.60161052867534]
We introduce a double targeted universal adversarial perturbations (DT-UAPs) to bridge the gap between the instance-discriminative image-dependent perturbations and the generic universal perturbations.
We show the effectiveness of the proposed DTA algorithm on a wide range of datasets and also demonstrate its potential as a physical attack.
arXiv Detail & Related papers (2020-10-07T09:08:51Z) - Graph Backdoor [53.70971502299977]
We present GTA, the first backdoor attack on graph neural networks (GNNs)
GTA departs in significant ways: it defines triggers as specific subgraphs, including both topological structures and descriptive features.
It can be instantiated for both transductive (e.g., node classification) and inductive (e.g., graph classification) tasks.
arXiv Detail & Related papers (2020-06-21T19:45:30Z) - A Self-supervised Approach for Adversarial Robustness [105.88250594033053]
Adversarial examples can cause catastrophic mistakes in Deep Neural Network (DNNs) based vision systems.
This paper proposes a self-supervised adversarial training mechanism in the input space.
It provides significant robustness against the textbfunseen adversarial attacks.
arXiv Detail & Related papers (2020-06-08T20:42:39Z) - Adversarial Feature Desensitization [12.401175943131268]
We propose a novel approach to adversarial robustness, which builds upon the insights from the domain adaptation field.
Our method, called Adversarial Feature Desensitization (AFD), aims at learning features that are invariant towards adversarial perturbations of the inputs.
arXiv Detail & Related papers (2020-06-08T14:20:02Z) - RAID: Randomized Adversarial-Input Detection for Neural Networks [7.37305608518763]
We propose a novel technique for adversarial-image detection, RAID, that trains a secondary classifier to identify differences in neuron activation values between benign and adversarial inputs.
RAID is more reliable and more effective than the state of the art when evaluated against six popular attacks.
arXiv Detail & Related papers (2020-02-07T13:27:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.