論文の概要: WW-FL: Secure and Private Large-Scale Federated Learning
- arxiv url: http://arxiv.org/abs/2302.09904v3
- Date: Thu, 30 May 2024 17:00:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-01 00:12:24.786346
- Title: WW-FL: Secure and Private Large-Scale Federated Learning
- Title(参考訳): WW-FL: セキュアでプライベートな大規模フェデレーションラーニング
- Authors: Felix Marx, Thomas Schneider, Ajith Suresh, Tobias Wehrle, Christian Weinert, Hossein Yalame,
- Abstract要約: Federated Learning(FL)は、クライアントデバイス上でトレーニングデータを保持することによって、データのプライバシを保証する、大規模分散機械学習の効率的なアプローチである。
最近の研究でFLの脆弱性が発見され、毒殺攻撃によってセキュリティとプライバシーの両方に影響を及ぼした。
データとグローバルモデルのプライバシを保証するために,セキュアなマルチパーティ計算と階層的なFLを組み合わせた,革新的なフレームワークであるWW-FLを提案する。
- 参考スコア(独自算出の注目度): 15.412475066687723
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated learning (FL) is an efficient approach for large-scale distributed machine learning that promises data privacy by keeping training data on client devices. However, recent research has uncovered vulnerabilities in FL, impacting both security and privacy through poisoning attacks and the potential disclosure of sensitive information in individual model updates as well as the aggregated global model. This paper explores the inadequacies of existing FL protection measures when applied independently, and the challenges of creating effective compositions. Addressing these issues, we propose WW-FL, an innovative framework that combines secure multi-party computation (MPC) with hierarchical FL to guarantee data and global model privacy. One notable feature of WW-FL is its capability to prevent malicious clients from directly poisoning model parameters, confining them to less destructive data poisoning attacks. We furthermore provide a PyTorch-based FL implementation integrated with Meta's CrypTen MPC framework to systematically measure the performance and robustness of WW-FL. Our extensive evaluation demonstrates that WW-FL is a promising solution for secure and private large-scale federated learning.
- Abstract(参考訳): Federated Learning(FL)は、クライアントデバイス上でトレーニングデータを保持することによって、データのプライバシを保証する、大規模分散機械学習の効率的なアプローチである。
しかし、最近の研究でFLの脆弱性が明らかとなり、セキュリティとプライバシの両方に悪影響を及ぼし、個々のモデル更新や集約されたグローバルモデルにおいて機密情報が開示される可能性があることが判明した。
本稿では,既存のFL保護対策が独立に適用されている場合の問題点と,有効組成の創出に関する課題について考察する。
これらの課題に対処するために,セキュアなマルチパーティ計算(MPC)と階層FLを組み合わせた,データとグローバルモデルのプライバシを保証する革新的なフレームワークであるWW-FLを提案する。
WW-FLの特長の1つは、悪意のあるクライアントがモデルパラメータを直接毒殺することを防ぎ、破壊的なデータ中毒攻撃を減らすことである。
さらに、PyTorchベースのFL実装をMetaのCrypTen MPCフレームワークに統合し、WW-FLの性能と堅牢性を体系的に測定する。
我々は,WW-FLが安全かつプライベートな大規模フェデレーション学習のための有望なソリューションであることを示す。
関連論文リスト
- Formal Logic-guided Robust Federated Learning against Poisoning Attacks [6.997975378492098]
Federated Learning (FL)は、集中型機械学習(ML)に関連するプライバシー問題に対して、有望な解決策を提供する。
FLは、敵クライアントがトレーニングデータやモデル更新を操作して全体的なモデルパフォーマンスを低下させる、毒殺攻撃など、さまざまなセキュリティ上の脅威に対して脆弱である。
本稿では,時系列タスクにおけるフェデレート学習における中毒攻撃の軽減を目的とした防御機構を提案する。
論文 参考訳(メタデータ) (2024-11-05T16:23:19Z) - Enhancing Security and Privacy in Federated Learning using Update Digests and Voting-Based Defense [23.280147155814955]
フェデレートラーニング(FL)は、有望なプライバシー保護機械学習パラダイムである。
その可能性にもかかわらず、FLはクライアントとサーバの信頼性に関する課題に直面している。
underlinetextbfFederated underlinetextbfLearning with underlinetextbfUpdate underlinetextbfDigest (FLUD) という新しいフレームワークを導入する。
FLUDは、分散学習環境におけるビザンチン攻撃に対するプライバシー保護と抵抗の重要な問題に対処する。
論文 参考訳(メタデータ) (2024-05-29T06:46:10Z) - FLGuard: Byzantine-Robust Federated Learning via Ensemble of Contrastive
Models [2.7539214125526534]
フェデレートラーニング(FL)は、多くのクライアントとグローバルモデルのトレーニングで活躍する。
近年の研究では、世界モデルの精度に壊滅的な損失をもたらす中毒攻撃が提案されている。
本稿では、悪意のあるクライアントを検出し、悪意のあるローカル更新を破棄する新しいバイザンチン・ロバストFL法FLGuardを提案する。
論文 参考訳(メタデータ) (2024-03-05T10:36:27Z) - Tunable Soft Prompts are Messengers in Federated Learning [55.924749085481544]
フェデレートラーニング(FL)は、複数の参加者が分散データソースを使用して機械学習モデルを協調的にトレーニングすることを可能にする。
FLにおけるモデルプライバシ保護の欠如は無視できない課題となっている。
そこで本研究では,ソフトプロンプトによって参加者間の情報交換を実現する新しいFLトレーニング手法を提案する。
論文 参考訳(メタデータ) (2023-11-12T11:01:10Z) - SPFL: A Self-purified Federated Learning Method Against Poisoning Attacks [12.580891810557482]
フェデレートラーニング(FL)は、プライバシを保存する分散トレーニングデータを引き出す上で魅力的なものだ。
本研究では, ベニグアのクライアントが, 局所的に精製されたモデルの信頼性のある歴史的特徴を活用できる自己浄化FL(SPFL)手法を提案する。
実験により,SPFLは様々な毒殺攻撃に対して,最先端のFL防御に優れることを示した。
論文 参考訳(メタデータ) (2023-09-19T13:31:33Z) - FLShield: A Validation Based Federated Learning Framework to Defend
Against Poisoning Attacks [1.8925617030516926]
フェデレーテッド・ラーニング(FL)は、自動運転車や医療など、多くの安全上重要な領域で使われている。
本稿では,FL参加者の良性データを用いて局所モデルを検証するFLShieldという新しいFLフレームワークを提案する。
我々はFLShieldフレームワークを様々な環境で評価し、様々な種類の毒やバックドア攻撃を阻止する効果を実証するために広範囲にわたる実験を行った。
論文 参考訳(メタデータ) (2023-08-10T19:29:44Z) - Mitigating Cross-client GANs-based Attack in Federated Learning [78.06700142712353]
マルチ分散マルチメディアクライアントは、グローバル共有モデルの共同学習のために、フェデレートラーニング(FL)を利用することができる。
FLは、GAN(C-GANs)をベースとしたクロスクライアント・ジェネレーティブ・敵ネットワーク(GANs)攻撃に苦しむ。
C-GAN攻撃に抵抗する現在のFLスキームを改善するためのFed-EDKD手法を提案する。
論文 参考訳(メタデータ) (2023-07-25T08:15:55Z) - FLIP: A Provable Defense Framework for Backdoor Mitigation in Federated
Learning [66.56240101249803]
我々は,クライアントの強固化がグローバルモデル(および悪意のあるクライアント)に与える影響について検討する。
本稿では, 逆エンジニアリングによる防御手法を提案するとともに, 堅牢性を保証して, 改良を実現できることを示す。
競合する8つのSOTA防御法について, 単発および連続のFLバックドア攻撃に対して, 提案手法の実証的優位性を示した。
論文 参考訳(メタデータ) (2022-10-23T22:24:03Z) - Do Gradient Inversion Attacks Make Federated Learning Unsafe? [70.0231254112197]
フェデレートラーニング(FL)は、生データを共有することなく、AIモデルの協調トレーニングを可能にする。
モデル勾配からのディープニューラルネットワークの反転に関する最近の研究は、トレーニングデータの漏洩を防止するためのFLの安全性に関する懸念を提起した。
本研究では,本論文で提示されたこれらの攻撃が実際のFLユースケースでは実行不可能であることを示し,新たなベースライン攻撃を提供する。
論文 参考訳(メタデータ) (2022-02-14T18:33:12Z) - RoFL: Attestable Robustness for Secure Federated Learning [59.63865074749391]
フェデレートラーニング(Federated Learning)により、多数のクライアントが、プライベートデータを共有することなく、ジョイントモデルをトレーニングできる。
クライアントのアップデートの機密性を保証するため、フェデレートラーニングシステムはセキュアなアグリゲーションを採用している。
悪意のあるクライアントに対する堅牢性を向上させるセキュアなフェデレート学習システムであるRoFLを提案する。
論文 参考訳(メタデータ) (2021-07-07T15:42:49Z) - WAFFLe: Weight Anonymized Factorization for Federated Learning [88.44939168851721]
データが機密性やプライベート性を持つドメインでは、ローカルデバイスを離れることなく、分散的に学習できるメソッドには大きな価値があります。
本稿では,フェデレートラーニングのためのウェイト匿名化因子化(WAFFLe)を提案する。これは,インド・バフェット・プロセスとニューラルネットワークの重み要因の共有辞書を組み合わせたアプローチである。
論文 参考訳(メタデータ) (2020-08-13T04:26:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。