論文の概要: Personalized Wireless Federated Learning for Large Language Models
- arxiv url: http://arxiv.org/abs/2404.13238v2
- Date: Fri, 13 Jun 2025 23:38:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-17 17:28:44.483093
- Title: Personalized Wireless Federated Learning for Large Language Models
- Title(参考訳): 大規模言語モデルのためのパーソナライズされた無線フェデレーション学習
- Authors: Feibo Jiang, Li Dong, Siwei Tu, Yubo Peng, Kezhi Wang, Kun Yang, Cunhua Pan, Dusit Niyato,
- Abstract要約: 大規模言語モデル(LLM)は、無線ネットワークにおいて大きな変革をもたらしている。
無線環境では、LLMのトレーニングはセキュリティとプライバシに関する重大な課題に直面している。
本稿では,無線ネットワークにおけるLLMのトレーニング段階の体系的解析を行い,事前学習,命令チューニング,アライメントチューニングを行う。
- 参考スコア(独自算出の注目度): 75.22457544349668
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have driven profound transformations in wireless networks. However, within wireless environments, the training of LLMs faces significant challenges related to security and privacy. Federated Learning (FL), with its decentralized architecture, offers enhanced data privacy protection. Nevertheless, when integrated with LLMs, FL still struggles with several critical limitations, including large-scale and heterogeneous data, resource-intensive training, and substantial communication overhead. To address these challenges, this paper first presents a systematic analysis of the distinct training stages of LLMs in wireless networks, including pre-training, instruction tuning, and alignment tuning. Building upon this foundation, we propose a Personalized Wireless Federated Fine-tuning (PWFF) framework. Initially, we utilize the adapter and Low-Rank Adaptation (LoRA) techniques to decrease energy consumption, while employing global partial aggregation to reduce communication delay. Subsequently, we develop two reward models and design a personalized loss function to fulfill the goal of personalized learning. Furthermore, we implement a local multi-objective alignment to ensure the stability and effectiveness of the FL process. Finally, we conduct a series of simulations to validate the performance of the proposed PWFF method and provide an in-depth discussion of the open issues.
- Abstract(参考訳): 大規模言語モデル(LLM)は、無線ネットワークにおいて大きな変革をもたらしている。
しかし、無線環境では、LLMのトレーニングはセキュリティとプライバシに関する重大な課題に直面している。
Federated Learning(FL)はその分散アーキテクチャで、データプライバシ保護の強化を提供する。
それでも、LLMと統合した場合、FLは大規模で異質なデータ、リソース集約トレーニング、かなりの通信オーバーヘッドなど、いくつかの重要な制限に悩まされている。
これらの課題に対処するため,本稿では,まず,無線ネットワークにおけるLCMの個別訓練段階について,事前学習,命令チューニング,アライメントチューニングを含む系統的解析を行った。
そこで我々はPersonalized Wireless Federated Fine-tuning(PWFF)フレームワークを提案する。
まず, アダプタとローランド適応 (LoRA) 技術を用いて, 通信遅延の低減にグローバルな部分的アグリゲーションを用いながら, エネルギー消費の低減を図る。
次に,2つの報酬モデルを開発し,パーソナライズされた学習目標を達成するためにパーソナライズされた損失関数を設計する。
さらに,FLプロセスの安定性と有効性を確保するために,局所多目的アライメントを実装した。
最後に,提案したPWFF法の性能評価と,オープン問題に関する詳細な議論を行うため,一連のシミュレーションを行った。
関連論文リスト
- Empowering Large Language Models in Wireless Communication: A Novel Dataset and Fine-Tuning Framework [81.29965270493238]
我々は,無線通信アプリケーションのための大規模言語モデル(LLM)の評価と微調整を目的とした,特殊なデータセットを開発した。
データセットには、真/偽と複数選択型を含む、さまざまなマルチホップ質問が含まれている。
本稿では,PVI(Pointwise V-Information)に基づく微調整手法を提案する。
論文 参考訳(メタデータ) (2025-01-16T16:19:53Z) - Federated Large Language Models: Current Progress and Future Directions [63.68614548512534]
本稿では,LLM(FedLLM)のフェデレーション学習について調査し,最近の進歩と今後の方向性を明らかにする。
ファインチューニングと迅速な学習という2つの重要な側面に注目し、既存の作業と関連する研究課題について議論する。
論文 参考訳(メタデータ) (2024-09-24T04:14:33Z) - CELLM: An Efficient Communication in Large Language Models Training for Federated Learning [0.0]
本論文は,フェデレートラーニング(FL)における大規模言語モデル(LLM)の効率的な学習手法の開発を目的とする。
まず,ローランク適応(LoRA)を用いて局所モデルトレーニングの計算負荷を削減する。
第2に、コミュニケーションコストを大幅に削減するために、トレーニング全体を通してスパース更新を通信します。
論文 参考訳(メタデータ) (2024-07-30T05:24:08Z) - R-SFLLM: Jamming Resilient Framework for Split Federated Learning with Large Language Models [83.77114091471822]
Split Federated Learning (SFL)は、分散機械学習(ML)における計算効率のパラダイムである。
SFLの課題は、特に無線チャネル上に展開する場合、送信されたモデルパラメータが相手のジャミングに感受性を持つことである。
これは、言語理解に不可欠である大規模言語モデル(LLM)における単語埋め込みパラメータに対して特に顕著である。
無線ネットワーク上でのLLM(R-SFLLM)を用いたレジリエンスSFLのための物理層フレームワークを開発した。
論文 参考訳(メタデータ) (2024-07-16T12:21:29Z) - Large Language Models (LLMs) Assisted Wireless Network Deployment in Urban Settings [0.21847754147782888]
大きな言語モデル(LLM)は、言語理解と人間に似たテキスト生成に革命をもたらした。
本稿では,6G(第6世代)無線通信技術におけるLCMの電力利用技術について検討する。
無線通信におけるネットワーク展開にLLMを利用する新しい強化学習(RL)フレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-22T05:19:51Z) - Communication-Efficient Personalized Federated Learning for
Speech-to-Text Tasks [66.78640306687227]
プライバシー保護と法的規制を満たすために、連邦学習(FL)は、音声テキスト(S2T)システムのトレーニングにおいて大きな注目を集めている。
S2Tタスクで一般的に使用されるFLアプローチ(textscFedAvg)は、通常、広範な通信オーバーヘッドに悩まされる。
我々は、クライアント側チューニングとサーバとのインタラクションのための軽量なLoRAモジュールであるtextscFedLoRA と、$k$-near を備えたグローバルモデルである textscFedMem を導入したパーソナライズされたS2Tフレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-18T15:39:38Z) - Differentially Private Low-Rank Adaptation of Large Language Model Using Federated Learning [32.52811740662061]
本稿では,大規模言語モデル(LLM)に適した新しいフェデレーション学習アルゴリズムDP-LoRAを紹介する。
DP-LoRAは、重み付け更新のノイズを追加し、データプライバシを個別に維持しつつ、協調的なモデルトレーニングを容易にするガウス機構を使用することで、データのプライバシを保存する。
論文 参考訳(メタデータ) (2023-12-29T06:50:38Z) - FedMS: Federated Learning with Mixture of Sparsely Activated Foundations
Models [11.362085734837217]
我々はFedMSと呼ばれる新しい2段階のフェデレーション学習アルゴリズムを提案する。
グローバルエキスパートは第一段階で訓練され、ローカルエキスパートは第二段階で訓練され、より良いパーソナライズを提供する。
我々はFedMSの有効性を検証するために広範囲な実験を行い、その結果、FedMSは他のSOTAベースラインを55.25%まで上回る結果となった。
論文 参考訳(メタデータ) (2023-12-26T07:40:26Z) - Tunable Soft Prompts are Messengers in Federated Learning [55.924749085481544]
フェデレートラーニング(FL)は、複数の参加者が分散データソースを使用して機械学習モデルを協調的にトレーニングすることを可能にする。
FLにおけるモデルプライバシ保護の欠如は無視できない課題となっている。
そこで本研究では,ソフトプロンプトによって参加者間の情報交換を実現する新しいFLトレーニング手法を提案する。
論文 参考訳(メタデータ) (2023-11-12T11:01:10Z) - DisPFL: Towards Communication-Efficient Personalized Federated Learning
via Decentralized Sparse Training [84.81043932706375]
本稿では,分散型(ピアツーピア)通信プロトコルであるDis-PFLにおいて,新たな個人化フェデレーション学習フレームワークを提案する。
Dis-PFLはパーソナライズされたスパースマスクを使用して、エッジ上のスパースローカルモデルをカスタマイズする。
本手法は,計算複雑性の異なる異種ローカルクライアントに容易に適応できることを実証する。
論文 参考訳(メタデータ) (2022-06-01T02:20:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。