論文の概要: Dynamic Graph Neural Network with Adaptive Edge Attributes for Air
Quality Predictions
- arxiv url: http://arxiv.org/abs/2302.09977v1
- Date: Mon, 20 Feb 2023 13:45:55 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-21 15:13:55.537984
- Title: Dynamic Graph Neural Network with Adaptive Edge Attributes for Air
Quality Predictions
- Title(参考訳): 適応エッジ属性を持つ動的グラフニューラルネットワークによる空気質予測
- Authors: Jing Xu, Shuo Wang, Na Ying, Xiao Xiao, Jiang Zhang, Yun Cheng,
Zhiling Jin, Gangfeng Zhang
- Abstract要約: 本稿では,メッセージパッシングネットワーク上での適応エッジ属性(DGN-AEA)を用いた動的グラフニューラルネットワークを提案する。
エッジを確立するための事前情報とは異なり、事前情報なしでエンドツーエンドのトレーニングを通じて適応的なエッジ情報を得ることができる。
- 参考スコア(独自算出の注目度): 12.336689498639366
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Air quality prediction is a typical spatio-temporal modeling problem, which
always uses different components to handle spatial and temporal dependencies in
complex systems separately. Previous models based on time series analysis and
Recurrent Neural Network (RNN) methods have only modeled time series while
ignoring spatial information. Previous GCNs-based methods usually require
providing spatial correlation graph structure of observation sites in advance.
The correlations among these sites and their strengths are usually calculated
using prior information. However, due to the limitations of human cognition,
limited prior information cannot reflect the real station-related structure or
bring more effective information for accurate prediction. To this end, we
propose a novel Dynamic Graph Neural Network with Adaptive Edge Attributes
(DGN-AEA) on the message passing network, which generates the adaptive
bidirected dynamic graph by learning the edge attributes as model parameters.
Unlike prior information to establish edges, our method can obtain adaptive
edge information through end-to-end training without any prior information.
Thus reduced the complexity of the problem. Besides, the hidden structural
information between the stations can be obtained as model by-products, which
can help make some subsequent decision-making analyses. Experimental results
show that our model received state-of-the-art performance than other baselines.
- Abstract(参考訳): 空気質予測は典型的な時空間モデリング問題であり、複雑なシステムにおける空間的および時間的依存性を別々に扱うために常に異なるコンポーネントを使用する。
時系列解析とリカレントニューラルネットワーク(RNN)法に基づく従来のモデルは,空間情報を無視しながら時系列のみをモデル化した。
従来のGCNに基づく手法では、事前に観測地点の空間相関グラフ構造を提供する必要がある。
これらのサイトと強度の相関は、通常、事前情報を用いて計算される。
しかし、人間の認識の限界のため、限られた事前情報は実際の駅構造を反映したり、正確な予測のためにより効果的な情報をもたらすことはできない。
そこで本研究では,適応エッジ属性をモデルパラメータとして学習することで,適応双方向動的グラフを生成する,適応エッジ属性を持つ動的グラフニューラルネットワーク(DGN-AEA)を提案する。
エッジを確立するための事前情報とは異なり、事前情報なしでエンドツーエンドのトレーニングを通じて適応的なエッジ情報を得ることができる。
したがって、問題の複雑さを減らした。
さらに、ステーション間の隠れた構造情報はモデル副産物として得ることができ、その後の意思決定分析に役立つ。
実験結果から,本モデルが他のベースラインよりも高い性能を示した。
関連論文リスト
- Graph Pruning Based Spatial and Temporal Graph Convolutional Network with Transfer Learning for Traffic Prediction [0.0]
本研究では,グラフプルーニングと転送学習の枠組みに基づく新しい時空間畳み込みネットワーク(TL-GPSTGN)を提案する。
その結果、単一のデータセット上でのTL-GPSTGNの異常な予測精度と、異なるデータセット間の堅牢なマイグレーション性能が示された。
論文 参考訳(メタデータ) (2024-09-25T00:59:23Z) - STG4Traffic: A Survey and Benchmark of Spatial-Temporal Graph Neural Networks for Traffic Prediction [9.467593700532401]
本稿では,グラフ学習戦略と一般的なグラフ畳み込みアルゴリズムの体系的なレビューを行う。
次に、最近提案された空間時間グラフネットワークモデルの長所と短所を包括的に分析する。
ディープラーニングフレームワークPyTorchを用いたSTG4Trafficという研究を構築し,2種類のトラフィックデータセットに対して,標準化されたスケーラブルなベンチマークを確立する。
論文 参考訳(メタデータ) (2023-07-02T06:56:52Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
時間予測のための動的拡散型グラフニューラルネットワーク(DVGNN)を提案する。
提案したDVGNNモデルは最先端のアプローチよりも優れ,Root Mean Squared Errorの結果が優れている。
論文 参考訳(メタデータ) (2023-05-16T11:38:19Z) - Uncovering the Missing Pattern: Unified Framework Towards Trajectory
Imputation and Prediction [60.60223171143206]
軌道予測は、観測されたシーケンスから実体運動や人間の行動を理解する上で重要な作業である。
現在の方法では、観測されたシーケンスが完了したと仮定し、欠落した値の可能性を無視する。
本稿では,グラフに基づく条件変動リカレントニューラルネットワーク (GC-VRNN) の統一フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-28T14:27:27Z) - Graph-Time Convolutional Neural Networks: Architecture and Theoretical
Analysis [12.995632804090198]
グラフ時間畳み込みニューラルネットワーク(GTCNN)を学習支援の原則アーキテクチャとして導入する。
このアプローチはどんな種類のプロダクトグラフでも機能し、パラメトリックグラフを導入して、プロダクトの時間的結合も学べます。
GTCNNが最先端のソリューションと好意的に比較できることを示す。
論文 参考訳(メタデータ) (2022-06-30T10:20:52Z) - Long-term Spatio-temporal Forecasting via Dynamic Multiple-Graph
Attention [20.52864145999387]
長期的テンソル時間予測(LSTF)は、空間的領域と時間的領域、文脈的情報、およびデータ固有のパターン間の長期的依存関係を利用する。
本稿では,各ノードのコンテキスト情報と長期駐車による時間的データ依存構造を表現する新しいグラフモデルを提案する。
提案手法は,LSTF予測タスクにおける既存のグラフニューラルネットワークモデルの性能を大幅に向上させる。
論文 参考訳(メタデータ) (2022-04-23T06:51:37Z) - PGCN: Progressive Graph Convolutional Networks for Spatial-Temporal Traffic Forecasting [4.14360329494344]
我々は、プログレッシブグラフ畳み込みネットワーク(PGCN)と呼ばれる新しいトラフィック予測フレームワークを提案する。
PGCNは、トレーニングおよびテストフェーズ中にオンライン入力データに段階的に適応することで、グラフのセットを構築する。
提案したモデルでは,すべてのデータセットの一貫性を保ちながら,最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2022-02-18T02:15:44Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
動的グラフニューラル正規微分方程式(MTGODE)を用いた多変量時系列予測連続モデルを提案する。
具体的には、まず、時間進化するノードの特徴と未知のグラフ構造を持つ動的グラフに多変量時系列を抽象化する。
そして、欠落したグラフトポロジを補完し、空間的および時間的メッセージパッシングを統一するために、ニューラルODEを設計、解決する。
論文 参考訳(メタデータ) (2022-02-17T02:17:31Z) - Spatio-Temporal Joint Graph Convolutional Networks for Traffic
Forecasting [75.10017445699532]
近年、時間グラフモデリング問題として交通予測の定式化に焦点が移っている。
本稿では,道路網における交通予測の精度向上のための新しい手法を提案する。
論文 参考訳(メタデータ) (2021-11-25T08:45:14Z) - Adaptive Graph Convolutional Recurrent Network for Traffic Forecasting [47.19400232038575]
ノード固有のパターンの学習は、事前に定義されたグラフが避けられる間、トラフィック予測に不可欠である、と我々は主張する。
本稿では,新たな機能を備えたグラフ・コンパス・ネットワーク(GCN)の拡張のための2つの適応モジュールを提案する。
実世界の2つの交通データセットに対する実験により、AGCRNは空間接続に関する事前定義されたグラフを使わずに、かなりのマージンで最先端の性能を示した。
論文 参考訳(メタデータ) (2020-07-06T15:51:10Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
多変量時系列データに特化して設計された汎用グラフニューラルネットワークフレームワークを提案する。
グラフ学習モジュールを用いて,変数間の一方向関係を自動的に抽出する。
提案手法は,4つのベンチマークデータセットのうち3つにおいて,最先端のベースライン手法よりも優れている。
論文 参考訳(メタデータ) (2020-05-24T04:02:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。