Infinite-Dimensional Diffusion Models
- URL: http://arxiv.org/abs/2302.10130v2
- Date: Tue, 3 Oct 2023 13:22:42 GMT
- Title: Infinite-Dimensional Diffusion Models
- Authors: Jakiw Pidstrigach, Youssef Marzouk, Sebastian Reich, Sven Wang
- Abstract summary: We formulate diffusion-based generative models in infinite dimensions and apply them to the generative modeling of functions.
We show that our formulations are well posed in the infinite-dimensional setting and provide dimension-independent distance bounds from the sample to the target measure.
We also develop guidelines for the design of infinite-dimensional diffusion models.
- Score: 4.342241136871849
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models have had a profound impact on many application areas,
including those where data are intrinsically infinite-dimensional, such as
images or time series. The standard approach is first to discretize and then to
apply diffusion models to the discretized data. While such approaches are
practically appealing, the performance of the resulting algorithms typically
deteriorates as discretization parameters are refined. In this paper, we
instead directly formulate diffusion-based generative models in infinite
dimensions and apply them to the generative modeling of functions. We prove
that our formulations are well posed in the infinite-dimensional setting and
provide dimension-independent distance bounds from the sample to the target
measure. Using our theory, we also develop guidelines for the design of
infinite-dimensional diffusion models. For image distributions, these
guidelines are in line with the canonical choices currently made for diffusion
models. For other distributions, however, we can improve upon these canonical
choices, which we show both theoretically and empirically, by applying the
algorithms to data distributions on manifolds and inspired by Bayesian inverse
problems or simulation-based inference.
Related papers
- Distillation of Discrete Diffusion through Dimensional Correlations [21.078500510691747]
"Mixture" models in discrete diffusion are capable of treating dimensional correlations while remaining scalable.
We empirically demonstrate that our proposed method for discrete diffusions work in practice, by distilling a continuous-time discrete diffusion model pretrained on the CIFAR-10 dataset.
arXiv Detail & Related papers (2024-10-11T10:53:03Z) - G2D2: Gradient-guided Discrete Diffusion for image inverse problem solving [55.185588994883226]
This paper presents a novel method for addressing linear inverse problems by leveraging image-generation models based on discrete diffusion as priors.
To the best of our knowledge, this is the first approach to use discrete diffusion model-based priors for solving image inverse problems.
arXiv Detail & Related papers (2024-10-09T06:18:25Z) - Constrained Diffusion Models via Dual Training [80.03953599062365]
Diffusion processes are prone to generating samples that reflect biases in a training dataset.
We develop constrained diffusion models by imposing diffusion constraints based on desired distributions.
We show that our constrained diffusion models generate new data from a mixture data distribution that achieves the optimal trade-off among objective and constraints.
arXiv Detail & Related papers (2024-08-27T14:25:42Z) - Convergence Analysis of Discrete Diffusion Model: Exact Implementation
through Uniformization [17.535229185525353]
We introduce an algorithm leveraging the uniformization of continuous Markov chains, implementing transitions on random time points.
Our results align with state-of-the-art achievements for diffusion models in $mathbbRd$ and further underscore the advantages of discrete diffusion models in comparison to the $mathbbRd$ setting.
arXiv Detail & Related papers (2024-02-12T22:26:52Z) - Renormalizing Diffusion Models [0.7252027234425334]
We use diffusion models to learn inverse renormalization group flows of statistical and quantum field theories.
Our work provides an interpretation of multiscale diffusion models, and gives physically-inspired suggestions for diffusion models which should have novel properties.
arXiv Detail & Related papers (2023-08-23T18:02:31Z) - Reflected Diffusion Models [93.26107023470979]
We present Reflected Diffusion Models, which reverse a reflected differential equation evolving on the support of the data.
Our approach learns the score function through a generalized score matching loss and extends key components of standard diffusion models.
arXiv Detail & Related papers (2023-04-10T17:54:38Z) - Diffusion Models are Minimax Optimal Distribution Estimators [49.47503258639454]
We provide the first rigorous analysis on approximation and generalization abilities of diffusion modeling.
We show that when the true density function belongs to the Besov space and the empirical score matching loss is properly minimized, the generated data distribution achieves the nearly minimax optimal estimation rates.
arXiv Detail & Related papers (2023-03-03T11:31:55Z) - Score Approximation, Estimation and Distribution Recovery of Diffusion
Models on Low-Dimensional Data [68.62134204367668]
This paper studies score approximation, estimation, and distribution recovery of diffusion models, when data are supported on an unknown low-dimensional linear subspace.
We show that with a properly chosen neural network architecture, the score function can be both accurately approximated and efficiently estimated.
The generated distribution based on the estimated score function captures the data geometric structures and converges to a close vicinity of the data distribution.
arXiv Detail & Related papers (2023-02-14T17:02:35Z) - Diffusion Generative Models in Infinite Dimensions [10.15736468214228]
We generalize diffusion generative models to operate directly in function space.
A significant benefit of our function space point of view is that it allows us to explicitly specify the space of functions we are working in.
Our approach allows us to perform both unconditional and conditional generation of function-valued data.
arXiv Detail & Related papers (2022-12-01T21:54:19Z) - Unifying Diffusion Models' Latent Space, with Applications to
CycleDiffusion and Guidance [95.12230117950232]
We show that a common latent space emerges from two diffusion models trained independently on related domains.
Applying CycleDiffusion to text-to-image diffusion models, we show that large-scale text-to-image diffusion models can be used as zero-shot image-to-image editors.
arXiv Detail & Related papers (2022-10-11T15:53:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.