Surrogate models for diffusion on graphs via sparse polynomials
- URL: http://arxiv.org/abs/2502.06595v1
- Date: Mon, 10 Feb 2025 15:57:33 GMT
- Title: Surrogate models for diffusion on graphs via sparse polynomials
- Authors: Giuseppe Alessio D'Inverno, Kylian Ajavon, Simone Brugiapaglia,
- Abstract summary: We provide sparse-based surrogate models for parametric diffusion equations on graphs with community structure.<n>Our theoretical findings are accompanied by a series of numerical experiments conducted on both synthetic and real-world graphs.
- Score: 0.40964539027092906
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion kernels over graphs have been widely utilized as effective tools in various applications due to their ability to accurately model the flow of information through nodes and edges. However, there is a notable gap in the literature regarding the development of surrogate models for diffusion processes on graphs. In this work, we fill this gap by proposing sparse polynomial-based surrogate models for parametric diffusion equations on graphs with community structure. In tandem, we provide convergence guarantees for both least squares and compressed sensing-based approximations by showing the holomorphic regularity of parametric solutions to these diffusion equations. Our theoretical findings are accompanied by a series of numerical experiments conducted on both synthetic and real-world graphs that demonstrate the applicability of our methodology.
Related papers
- Critical Iterative Denoising: A Discrete Generative Model Applied to Graphs [52.50288418639075]
We propose a novel framework called Iterative Denoising, which simplifies discrete diffusion and circumvents the issue by assuming conditional independence across time.
Our empirical evaluations demonstrate that the proposed method significantly outperforms existing discrete diffusion baselines in graph generation tasks.
arXiv Detail & Related papers (2025-03-27T15:08:58Z) - Continuous Diffusion Model for Language Modeling [57.396578974401734]
Existing continuous diffusion models for discrete data have limited performance compared to discrete approaches.<n>We propose a continuous diffusion model for language modeling that incorporates the geometry of the underlying categorical distribution.
arXiv Detail & Related papers (2025-02-17T08:54:29Z) - Hyperbolic Geometric Latent Diffusion Model for Graph Generation [27.567428462212455]
Diffusion models have made significant contributions to computer vision, sparking a growing interest in the community recently regarding the application of them to graph generation.
In this paper, we propose a novel geometrically latent diffusion framework HypDiff.
Specifically, we first establish a geometrically latent space with interpretability measures based on hyperbolic geometry, to define anisotropic latent diffusion processes for graphs.
Then, we propose a geometrically latent diffusion process that is constrained by both radial and angular geometric properties, thereby ensuring the preservation of the original topological properties in the generative graphs.
arXiv Detail & Related papers (2024-05-06T06:28:44Z) - Unveil Conditional Diffusion Models with Classifier-free Guidance: A Sharp Statistical Theory [87.00653989457834]
Conditional diffusion models serve as the foundation of modern image synthesis and find extensive application in fields like computational biology and reinforcement learning.
Despite the empirical success, theory of conditional diffusion models is largely missing.
This paper bridges the gap by presenting a sharp statistical theory of distribution estimation using conditional diffusion models.
arXiv Detail & Related papers (2024-03-18T17:08:24Z) - Generative Modeling on Manifolds Through Mixture of Riemannian Diffusion Processes [57.396578974401734]
We introduce a principled framework for building a generative diffusion process on general manifold.
Instead of following the denoising approach of previous diffusion models, we construct a diffusion process using a mixture of bridge processes.
We develop a geometric understanding of the mixture process, deriving the drift as a weighted mean of tangent directions to the data points.
arXiv Detail & Related papers (2023-10-11T06:04:40Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
We inspect the ODE-based sampling of a popular variance-exploding SDE.
We establish a theoretical relationship between the optimal ODE-based sampling and the classic mean-shift (mode-seeking) algorithm.
arXiv Detail & Related papers (2023-05-31T15:33:16Z) - Infinite-Dimensional Diffusion Models [4.342241136871849]
We formulate diffusion-based generative models in infinite dimensions and apply them to the generative modeling of functions.
We show that our formulations are well posed in the infinite-dimensional setting and provide dimension-independent distance bounds from the sample to the target measure.
We also develop guidelines for the design of infinite-dimensional diffusion models.
arXiv Detail & Related papers (2023-02-20T18:00:38Z) - Fast Graph Generative Model via Spectral Diffusion [38.31052833073743]
We argue that running full-rank diffusion SDEs on the whole space hinders diffusion models from learning graph topology generation.
We propose an efficient yet effective Graph Spectral Diffusion Model (GSDM), which is driven by low-rank diffusion SDEs on the graph spectrum space.
arXiv Detail & Related papers (2022-11-16T12:56:32Z) - Score-based Generative Modeling of Graphs via the System of Stochastic
Differential Equations [57.15855198512551]
We propose a novel score-based generative model for graphs with a continuous-time framework.
We show that our method is able to generate molecules that lie close to the training distribution yet do not violate the chemical valency rule.
arXiv Detail & Related papers (2022-02-05T08:21:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.