論文の概要: Pseudo-Labeling for Kernel Ridge Regression under Covariate Shift
- arxiv url: http://arxiv.org/abs/2302.10160v3
- Date: Fri, 08 Nov 2024 17:05:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-11 14:52:44.242524
- Title: Pseudo-Labeling for Kernel Ridge Regression under Covariate Shift
- Title(参考訳): 共変量シフト下におけるカーネルリッジ回帰の擬似ラベル化
- Authors: Kaizheng Wang,
- Abstract要約: 対象分布に対する平均2乗誤差が小さい回帰関数を,ラベルなしデータと異なる特徴分布を持つラベル付きデータに基づいて学習する。
ラベル付きデータを2つのサブセットに分割し、カーネルリッジの回帰処理を行い、候補モデルの集合と計算モデルを得る。
モデル選択に擬似ラベルを用いることで性能を著しく損なうことはないことが判明した。
- 参考スコア(独自算出の注目度): 1.3597551064547502
- License:
- Abstract: We develop and analyze a principled approach to kernel ridge regression under covariate shift. The goal is to learn a regression function with small mean squared error over a target distribution, based on unlabeled data from there and labeled data that may have a different feature distribution. We propose to split the labeled data into two subsets, and conduct kernel ridge regression on them separately to obtain a collection of candidate models and an imputation model. We use the latter to fill the missing labels and then select the best candidate accordingly. Our non-asymptotic excess risk bounds demonstrate that our estimator adapts effectively to both the structure of the target distribution and the covariate shift. This adaptation is quantified through a notion of effective sample size that reflects the value of labeled source data for the target regression task. Our estimator achieves the minimax optimal error rate up to a polylogarithmic factor, and we find that using pseudo-labels for model selection does not significantly hinder performance.
- Abstract(参考訳): 我々は,共変量シフトの下でカーネルリッジ回帰の原理的アプローチを開発し,解析する。
目的は、対象の分布に対する平均2乗誤差が小さい回帰関数を、ラベルのないデータと異なる特徴分布を持つ可能性のあるラベル付きデータに基づいて学習することである。
ラベル付きデータを2つのサブセットに分割し、カーネルリッジの回帰処理を行い、候補モデルの集合と計算モデルを得る。
不足しているラベルを埋めるために後者を使用し、それに従って最適な候補を選択します。
我々の非漸近的過剰リスク境界は、推定器がターゲット分布の構造と共変量シフトの両方に効果的に適応することを証明している。
この適応は、対象回帰タスクに対するラベル付きソースデータの価値を反映した有効サンプルサイズの概念によって定量化される。
モデル選択に擬似ラベルを用いることで性能を著しく損なうことはないことが判明した。
関連論文リスト
- Universality in Transfer Learning for Linear Models [18.427215139020625]
回帰モデルと二分分類モデルの両方を対象とした線形モデルにおける伝達学習の問題点について検討する。
我々は、厳密かつ厳密な分析を行い、事前訓練されたモデルと微調整されたモデルに対する一般化誤差(回帰)と分類誤差(二分分類)を関連付ける。
論文 参考訳(メタデータ) (2024-10-03T03:09:09Z) - Engression: Extrapolation through the Lens of Distributional Regression [2.519266955671697]
我々は、エングレースと呼ばれるニューラルネットワークに基づく分布回帰手法を提案する。
エングレスモデル(engression model)は、適合した条件分布からサンプリングできるという意味で生成され、高次元結果にも適している。
一方、最小二乗法や量子回帰法のような従来の回帰手法は、同じ仮定の下では不十分である。
論文 参考訳(メタデータ) (2023-07-03T08:19:00Z) - Confidence-Based Model Selection: When to Take Shortcuts for
Subpopulation Shifts [119.22672589020394]
モデル信頼度がモデル選択を効果的に導くことができるConfidence-based Model Selection (CosMoS)を提案する。
我々はCosMoSを,データ分散シフトのレベルが異なる複数のテストセットを持つ4つのデータセットで評価した。
論文 参考訳(メタデータ) (2023-06-19T18:48:15Z) - Robust Outlier Rejection for 3D Registration with Variational Bayes [70.98659381852787]
我々は、ロバストアライメントのための新しい変分非局所ネットワークベース外乱除去フレームワークを開発した。
そこで本稿では, 投票に基づく不整合探索手法を提案し, 変換推定のための高品質な仮説的不整合をクラスタリングする。
論文 参考訳(メタデータ) (2023-04-04T03:48:56Z) - Semi-Supervised Learning with Pseudo-Negative Labels for Image
Classification [14.100569951592417]
擬陰性ラベルに基づく相互学習フレームワークを提案する。
擬似負ラベルの予測確率を下げることにより、二重モデルは予測能力を向上させることができる。
我々のフレームワークは、いくつかの主要なベンチマークで最先端の結果を達成する。
論文 参考訳(メタデータ) (2023-01-10T14:15:17Z) - How Does Pseudo-Labeling Affect the Generalization Error of the
Semi-Supervised Gibbs Algorithm? [73.80001705134147]
擬似ラベル付き半教師付き学習(SSL)におけるGibsアルゴリズムによる予測一般化誤差(ゲンエラー)を正確に評価する。
ゲンエラーは、出力仮説、擬ラベルデータセット、ラベル付きデータセットの間の対称性付きKL情報によって表現される。
論文 参考訳(メタデータ) (2022-10-15T04:11:56Z) - $p$-Generalized Probit Regression and Scalable Maximum Likelihood
Estimation via Sketching and Coresets [74.37849422071206]
本稿では, 2次応答に対する一般化線形モデルである,$p$一般化プロビット回帰モデルについて検討する。
p$の一般化されたプロビット回帰に対する最大可能性推定器は、大容量データ上で$(1+varepsilon)$の係数まで効率的に近似できることを示す。
論文 参考訳(メタデータ) (2022-03-25T10:54:41Z) - X-model: Improving Data Efficiency in Deep Learning with A Minimax Model [78.55482897452417]
ディープラーニングにおける分類と回帰設定の両面でのデータ効率の向上を目標とする。
両世界の力を生かすために,我々は新しいX-モデルを提案する。
X-モデルは、特徴抽出器とタスク固有のヘッドの間でミニマックスゲームを行う。
論文 参考訳(メタデータ) (2021-10-09T13:56:48Z) - Examining and Combating Spurious Features under Distribution Shift [94.31956965507085]
我々は、最小限の統計量という情報理論の概念を用いて、ロバストで刺激的な表現を定義し、分析する。
入力分布のバイアスしか持たない場合でも、モデルはトレーニングデータから急激な特徴を拾い上げることができることを証明しています。
分析から着想を得た結果,グループDROは,グループ同士の相関関係を直接考慮しない場合に失敗する可能性が示唆された。
論文 参考訳(メタデータ) (2021-06-14T05:39:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。