Can ChatGPT Understand Too? A Comparative Study on ChatGPT and
Fine-tuned BERT
- URL: http://arxiv.org/abs/2302.10198v1
- Date: Sun, 19 Feb 2023 12:29:33 GMT
- Title: Can ChatGPT Understand Too? A Comparative Study on ChatGPT and
Fine-tuned BERT
- Authors: Qihuang Zhong, Liang Ding, Juhua Liu, Bo Du and Dacheng Tao
- Abstract summary: ChatGPT has attracted great attention, as it can generate fluent and high-quality responses to human inquiries.
We evaluate ChatGPT's understanding ability by evaluating it on the most popular GLUE benchmark, and comparing it with 4 representative fine-tuned BERT-style models.
We find that: 1) ChatGPT falls short in handling paraphrase and similarity tasks; 2) ChatGPT outperforms all BERT models on inference tasks by a large margin; 3) ChatGPT achieves comparable performance compared with BERT on sentiment analysis and question answering tasks.
- Score: 103.57103957631067
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, ChatGPT has attracted great attention, as it can generate fluent
and high-quality responses to human inquiries. Several prior studies have shown
that ChatGPT attains remarkable generation ability compared with existing
models. However, the quantitative analysis of ChatGPT's understanding ability
has been given little attention. In this report, we explore the understanding
ability of ChatGPT by evaluating it on the most popular GLUE benchmark, and
comparing it with 4 representative fine-tuned BERT-style models. We find that:
1) ChatGPT falls short in handling paraphrase and similarity tasks; 2) ChatGPT
outperforms all BERT models on inference tasks by a large margin; 3) ChatGPT
achieves comparable performance compared with BERT on sentiment analysis and
question answering tasks. Additionally, several bad cases from inference tasks
show the potential limitation of ChatGPT.
Related papers
- Exploring ChatGPT's Capabilities on Vulnerability Management [56.4403395100589]
We explore ChatGPT's capabilities on 6 tasks involving the complete vulnerability management process with a large-scale dataset containing 70,346 samples.
One notable example is ChatGPT's proficiency in tasks like generating titles for software bug reports.
Our findings reveal the difficulties encountered by ChatGPT and shed light on promising future directions.
arXiv Detail & Related papers (2023-11-11T11:01:13Z) - Primacy Effect of ChatGPT [69.49920102917598]
We study the primacy effect of ChatGPT: the tendency of selecting the labels at earlier positions as the answer.
We hope that our experiments and analyses provide additional insights into building more reliable ChatGPT-based solutions.
arXiv Detail & Related papers (2023-10-20T00:37:28Z) - ChatLog: Carefully Evaluating the Evolution of ChatGPT Across Time [54.18651663847874]
ChatGPT has achieved great success and can be considered to have acquired an infrastructural status.
Existing benchmarks encounter two challenges: (1) Disregard for periodical evaluation and (2) Lack of fine-grained features.
We construct ChatLog, an ever-updating dataset with large-scale records of diverse long-form ChatGPT responses for 21 NLP benchmarks from March, 2023 to now.
arXiv Detail & Related papers (2023-04-27T11:33:48Z) - Evaluating ChatGPT's Information Extraction Capabilities: An Assessment
of Performance, Explainability, Calibration, and Faithfulness [18.945934162722466]
We focus on assessing the overall ability of ChatGPT using 7 fine-grained information extraction (IE) tasks.
ChatGPT's performance in Standard-IE setting is poor, but it surprisingly exhibits excellent performance in the OpenIE setting.
ChatGPT provides high-quality and trustworthy explanations for its decisions.
arXiv Detail & Related papers (2023-04-23T12:33:18Z) - ChatGPT-Crawler: Find out if ChatGPT really knows what it's talking
about [15.19126287569545]
This research examines the responses generated by ChatGPT from different Conversational QA corpora.
The study employed BERT similarity scores to compare these responses with correct answers and obtain Natural Language Inference(NLI) labels.
The study identified instances where ChatGPT provided incorrect answers to questions, providing insights into areas where the model may be prone to error.
arXiv Detail & Related papers (2023-04-06T18:42:47Z) - Exploring ChatGPT's Ability to Rank Content: A Preliminary Study on
Consistency with Human Preferences [6.821378903525802]
ChatGPT has consistently demonstrated a remarkable level of accuracy and reliability in terms of content evaluation.
A test set consisting of prompts is created, covering a wide range of use cases, and five models are utilized to generate corresponding responses.
Results on the test set show that ChatGPT's ranking preferences are consistent with human to a certain extent.
arXiv Detail & Related papers (2023-03-14T03:13:02Z) - Is ChatGPT a Good NLG Evaluator? A Preliminary Study [121.77986688862302]
We provide a preliminary meta-evaluation on ChatGPT to show its reliability as an NLG metric.
Experimental results show that compared with previous automatic metrics, ChatGPT achieves state-of-the-art or competitive correlation with human judgments.
We hope our preliminary study could prompt the emergence of a general-purposed reliable NLG metric.
arXiv Detail & Related papers (2023-03-07T16:57:20Z) - Is ChatGPT a General-Purpose Natural Language Processing Task Solver? [113.22611481694825]
Large language models (LLMs) have demonstrated the ability to perform a variety of natural language processing (NLP) tasks zero-shot.
Recently, the debut of ChatGPT has drawn a great deal of attention from the natural language processing (NLP) community.
It is not yet known whether ChatGPT can serve as a generalist model that can perform many NLP tasks zero-shot.
arXiv Detail & Related papers (2023-02-08T09:44:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.