ChatGPT-Crawler: Find out if ChatGPT really knows what it's talking
about
- URL: http://arxiv.org/abs/2304.03325v1
- Date: Thu, 6 Apr 2023 18:42:47 GMT
- Title: ChatGPT-Crawler: Find out if ChatGPT really knows what it's talking
about
- Authors: Aman Rangapur, Haoran Wang
- Abstract summary: This research examines the responses generated by ChatGPT from different Conversational QA corpora.
The study employed BERT similarity scores to compare these responses with correct answers and obtain Natural Language Inference(NLI) labels.
The study identified instances where ChatGPT provided incorrect answers to questions, providing insights into areas where the model may be prone to error.
- Score: 15.19126287569545
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Large language models have gained considerable interest for their impressive
performance on various tasks. Among these models, ChatGPT developed by OpenAI
has become extremely popular among early adopters who even regard it as a
disruptive technology in many fields like customer service, education,
healthcare, and finance. It is essential to comprehend the opinions of these
initial users as it can provide valuable insights into the potential strengths,
weaknesses, and success or failure of the technology in different areas. This
research examines the responses generated by ChatGPT from different
Conversational QA corpora. The study employed BERT similarity scores to compare
these responses with correct answers and obtain Natural Language Inference(NLI)
labels. Evaluation scores were also computed and compared to determine the
overall performance of GPT-3 \& GPT-4. Additionally, the study identified
instances where ChatGPT provided incorrect answers to questions, providing
insights into areas where the model may be prone to error.
Related papers
- Evaluating ChatGPT as a Question Answering System: A Comprehensive
Analysis and Comparison with Existing Models [0.0]
This article scrutinizes ChatGPT as a Question Answering System (QAS)
The primary focus is on evaluating ChatGPT's proficiency in extracting responses from provided paragraphs.
The evaluation highlights hallucinations, where ChatGPT provides responses to questions without available answers in the provided context.
arXiv Detail & Related papers (2023-12-11T08:49:18Z) - Extending the Frontier of ChatGPT: Code Generation and Debugging [0.0]
ChatGPT, developed by OpenAI, has ushered in a new era by utilizing artificial intelligence (AI) to tackle diverse problem domains.
This research paper delves into the efficacy of ChatGPT in solving programming problems, examining both the correctness and the efficiency of its solution in terms of time and memory complexity.
The research reveals a commendable overall success rate of 71.875%, denoting the proportion of problems for which ChatGPT was able to provide correct solutions.
arXiv Detail & Related papers (2023-07-17T06:06:58Z) - ChatGPT Beyond English: Towards a Comprehensive Evaluation of Large
Language Models in Multilingual Learning [70.57126720079971]
Large language models (LLMs) have emerged as the most important breakthroughs in natural language processing (NLP)
This paper evaluates ChatGPT on 7 different tasks, covering 37 diverse languages with high, medium, low, and extremely low resources.
Compared to the performance of previous models, our extensive experimental results demonstrate a worse performance of ChatGPT for different NLP tasks and languages.
arXiv Detail & Related papers (2023-04-12T05:08:52Z) - To ChatGPT, or not to ChatGPT: That is the question! [78.407861566006]
This study provides a comprehensive and contemporary assessment of the most recent techniques in ChatGPT detection.
We have curated a benchmark dataset consisting of prompts from ChatGPT and humans, including diverse questions from medical, open Q&A, and finance domains.
Our evaluation results demonstrate that none of the existing methods can effectively detect ChatGPT-generated content.
arXiv Detail & Related papers (2023-04-04T03:04:28Z) - On the Robustness of ChatGPT: An Adversarial and Out-of-distribution
Perspective [67.98821225810204]
We evaluate the robustness of ChatGPT from the adversarial and out-of-distribution perspective.
Results show consistent advantages on most adversarial and OOD classification and translation tasks.
ChatGPT shows astounding performance in understanding dialogue-related texts.
arXiv Detail & Related papers (2023-02-22T11:01:20Z) - ChatGPT: Jack of all trades, master of none [4.693597927153063]
OpenAI has released the Chat Generative Pre-trained Transformer (ChatGPT)
We examined ChatGPT's capabilities on 25 diverse analytical NLP tasks.
We automated ChatGPT and GPT-4 prompting process and analyzed more than 49k responses.
arXiv Detail & Related papers (2023-02-21T15:20:37Z) - Can ChatGPT Understand Too? A Comparative Study on ChatGPT and
Fine-tuned BERT [103.57103957631067]
ChatGPT has attracted great attention, as it can generate fluent and high-quality responses to human inquiries.
We evaluate ChatGPT's understanding ability by evaluating it on the most popular GLUE benchmark, and comparing it with 4 representative fine-tuned BERT-style models.
We find that: 1) ChatGPT falls short in handling paraphrase and similarity tasks; 2) ChatGPT outperforms all BERT models on inference tasks by a large margin; 3) ChatGPT achieves comparable performance compared with BERT on sentiment analysis and question answering tasks.
arXiv Detail & Related papers (2023-02-19T12:29:33Z) - Is ChatGPT a General-Purpose Natural Language Processing Task Solver? [113.22611481694825]
Large language models (LLMs) have demonstrated the ability to perform a variety of natural language processing (NLP) tasks zero-shot.
Recently, the debut of ChatGPT has drawn a great deal of attention from the natural language processing (NLP) community.
It is not yet known whether ChatGPT can serve as a generalist model that can perform many NLP tasks zero-shot.
arXiv Detail & Related papers (2023-02-08T09:44:51Z) - A Categorical Archive of ChatGPT Failures [47.64219291655723]
ChatGPT, developed by OpenAI, has been trained using massive amounts of data and simulates human conversation.
It has garnered significant attention due to its ability to effectively answer a broad range of human inquiries.
However, a comprehensive analysis of ChatGPT's failures is lacking, which is the focus of this study.
arXiv Detail & Related papers (2023-02-06T04:21:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.