Differentiable Multi-Target Causal Bayesian Experimental Design
- URL: http://arxiv.org/abs/2302.10607v2
- Date: Fri, 2 Jun 2023 11:16:33 GMT
- Title: Differentiable Multi-Target Causal Bayesian Experimental Design
- Authors: Yashas Annadani, Panagiotis Tigas, Desi R. Ivanova, Andrew Jesson,
Yarin Gal, Adam Foster, Stefan Bauer
- Abstract summary: We introduce a gradient-based approach for the problem of Bayesian optimal experimental design to learn causal models in a batch setting.
Existing methods rely on greedy approximations to construct a batch of experiments.
We propose a conceptually simple end-to-end gradient-based optimization procedure to acquire a set of optimal intervention target-state pairs.
- Score: 43.76697029708785
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We introduce a gradient-based approach for the problem of Bayesian optimal
experimental design to learn causal models in a batch setting -- a critical
component for causal discovery from finite data where interventions can be
costly or risky. Existing methods rely on greedy approximations to construct a
batch of experiments while using black-box methods to optimize over a single
target-state pair to intervene with. In this work, we completely dispose of the
black-box optimization techniques and greedy heuristics and instead propose a
conceptually simple end-to-end gradient-based optimization procedure to acquire
a set of optimal intervention target-state pairs. Such a procedure enables
parameterization of the design space to efficiently optimize over a batch of
multi-target-state interventions, a setting which has hitherto not been
explored due to its complexity. We demonstrate that our proposed method
outperforms baselines and existing acquisition strategies in both single-target
and multi-target settings across a number of synthetic datasets.
Related papers
- Constrained Multi-objective Bayesian Optimization through Optimistic Constraints Estimation [10.77641869521259]
CMOBO balances learning of the feasible region with multi-objective optimization within the feasible region in a principled manner.
We provide both theoretical justification and empirical evidence, demonstrating the efficacy of our approach on various synthetic benchmarks and real-world applications.
arXiv Detail & Related papers (2024-11-06T03:38:00Z) - Batched Bayesian optimization with correlated candidate uncertainties [44.38372821900645]
We propose an acquisition strategy for discrete optimization motivated by pure exploitation, qPO (multipoint of Optimality)
We apply our method to the model-guided exploration of large chemical libraries and provide empirical evidence that it performs better than or on par with state-of-the-art methods in batched Bayesian optimization.
arXiv Detail & Related papers (2024-10-08T20:13:12Z) - An incremental preference elicitation-based approach to learning potentially non-monotonic preferences in multi-criteria sorting [53.36437745983783]
We first construct a max-margin optimization-based model to model potentially non-monotonic preferences.
We devise information amount measurement methods and question selection strategies to pinpoint the most informative alternative in each iteration.
Two incremental preference elicitation-based algorithms are developed to learn potentially non-monotonic preferences.
arXiv Detail & Related papers (2024-09-04T14:36:20Z) - Enhanced Bayesian Optimization via Preferential Modeling of Abstract
Properties [49.351577714596544]
We propose a human-AI collaborative Bayesian framework to incorporate expert preferences about unmeasured abstract properties into surrogate modeling.
We provide an efficient strategy that can also handle any incorrect/misleading expert bias in preferential judgments.
arXiv Detail & Related papers (2024-02-27T09:23:13Z) - Constrained Bayesian Optimization Under Partial Observations: Balanced
Improvements and Provable Convergence [6.461785985849886]
We endeavor to design an efficient and provable method for expensive POCOPs under the framework of constrained Bayesian optimization.
We present an improved design of the acquisition functions that introduces balanced exploration during optimization.
We propose a Gaussian process embedding different likelihoods as the surrogate model for a partially observable constraint.
arXiv Detail & Related papers (2023-12-06T01:00:07Z) - Tree ensemble kernels for Bayesian optimization with known constraints
over mixed-feature spaces [54.58348769621782]
Tree ensembles can be well-suited for black-box optimization tasks such as algorithm tuning and neural architecture search.
Two well-known challenges in using tree ensembles for black-box optimization are (i) effectively quantifying model uncertainty for exploration and (ii) optimizing over the piece-wise constant acquisition function.
Our framework performs as well as state-of-the-art methods for unconstrained black-box optimization over continuous/discrete features and outperforms competing methods for problems combining mixed-variable feature spaces and known input constraints.
arXiv Detail & Related papers (2022-07-02T16:59:37Z) - Outlier-Robust Sparse Estimation via Non-Convex Optimization [73.18654719887205]
We explore the connection between high-dimensional statistics and non-robust optimization in the presence of sparsity constraints.
We develop novel and simple optimization formulations for these problems.
As a corollary, we obtain that any first-order method that efficiently converges to station yields an efficient algorithm for these tasks.
arXiv Detail & Related papers (2021-09-23T17:38:24Z) - Batched Data-Driven Evolutionary Multi-Objective Optimization Based on
Manifold Interpolation [6.560512252982714]
We propose a framework for implementing batched data-driven evolutionary multi-objective optimization.
It is so general that any off-the-shelf evolutionary multi-objective optimization algorithms can be applied in a plug-in manner.
Our proposed framework is featured with a faster convergence and a stronger resilience to various PF shapes.
arXiv Detail & Related papers (2021-09-12T23:54:26Z) - Optimal Bayesian experimental design for subsurface flow problems [77.34726150561087]
We propose a novel approach for development of chaos expansion (PCE) surrogate model for the design utility function.
This novel technique enables the derivation of a reasonable quality response surface for the targeted objective function with a computational budget comparable to several single-point evaluations.
arXiv Detail & Related papers (2020-08-10T09:42:59Z) - Upper Trust Bound Feasibility Criterion for Mixed Constrained Bayesian
Optimization with Application to Aircraft Design [41.74498230885008]
We adapt the so-called super effcient global optimization algorithm to solve more accurately mixed constrained problems.
We show the good potential of the approach on a set of numerical experiments.
arXiv Detail & Related papers (2020-05-11T12:59:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.