Constrained Multi-objective Bayesian Optimization through Optimistic Constraints Estimation
- URL: http://arxiv.org/abs/2411.03641v1
- Date: Wed, 06 Nov 2024 03:38:00 GMT
- Title: Constrained Multi-objective Bayesian Optimization through Optimistic Constraints Estimation
- Authors: Diantong Li, Fengxue Zhang, Chong Liu, Yuxin Chen,
- Abstract summary: CMOBO balances learning of the feasible region with multi-objective optimization within the feasible region in a principled manner.
We provide both theoretical justification and empirical evidence, demonstrating the efficacy of our approach on various synthetic benchmarks and real-world applications.
- Score: 10.77641869521259
- License:
- Abstract: Multi-objective Bayesian optimization has been widely adopted in scientific experiment design, including drug discovery and hyperparameter optimization. In practice, regulatory or safety concerns often impose additional thresholds on certain attributes of the experimental outcomes. Previous work has primarily focused on constrained single-objective optimization tasks or active search under constraints. We propose CMOBO, a sample-efficient constrained multi-objective Bayesian optimization algorithm that balances learning of the feasible region (defined on multiple unknowns) with multi-objective optimization within the feasible region in a principled manner. We provide both theoretical justification and empirical evidence, demonstrating the efficacy of our approach on various synthetic benchmarks and real-world applications.
Related papers
- Learning Joint Models of Prediction and Optimization [56.04498536842065]
Predict-Then-Then framework uses machine learning models to predict unknown parameters of an optimization problem from features before solving.
This paper proposes an alternative method, in which optimal solutions are learned directly from the observable features by joint predictive models.
arXiv Detail & Related papers (2024-09-07T19:52:14Z) - Enhanced Bayesian Optimization via Preferential Modeling of Abstract
Properties [49.351577714596544]
We propose a human-AI collaborative Bayesian framework to incorporate expert preferences about unmeasured abstract properties into surrogate modeling.
We provide an efficient strategy that can also handle any incorrect/misleading expert bias in preferential judgments.
arXiv Detail & Related papers (2024-02-27T09:23:13Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
The Predict-Then-Forecast (PtO) paradigm in machine learning aims to maximize downstream decision quality.
This paper extends the PtO methodology to optimization problems with nondifferentiable Ordered Weighted Averaging (OWA) objectives.
It shows how optimization of OWA functions can be effectively integrated with parametric prediction for fair and robust optimization under uncertainty.
arXiv Detail & Related papers (2024-02-12T16:33:35Z) - Differentiable Multi-Target Causal Bayesian Experimental Design [43.76697029708785]
We introduce a gradient-based approach for the problem of Bayesian optimal experimental design to learn causal models in a batch setting.
Existing methods rely on greedy approximations to construct a batch of experiments.
We propose a conceptually simple end-to-end gradient-based optimization procedure to acquire a set of optimal intervention target-state pairs.
arXiv Detail & Related papers (2023-02-21T11:32:59Z) - Uncertainty-Aware Search Framework for Multi-Objective Bayesian
Optimization [40.40632890861706]
We consider the problem of multi-objective (MO) blackbox optimization using expensive function evaluations.
We propose a novel uncertainty-aware search framework referred to as USeMO to efficiently select the sequence of inputs for evaluation.
arXiv Detail & Related papers (2022-04-12T16:50:48Z) - A Robust Multi-Objective Bayesian Optimization Framework Considering
Input Uncertainty [0.0]
In real-life applications like engineering design, the designer often wants to take multiple objectives as well as input uncertainty into account.
We introduce a novel Bayesian optimization framework to efficiently perform multi-objective optimization considering input uncertainty.
arXiv Detail & Related papers (2022-02-25T17:45:26Z) - Learning Proximal Operators to Discover Multiple Optima [66.98045013486794]
We present an end-to-end method to learn the proximal operator across non-family problems.
We show that for weakly-ized objectives and under mild conditions, the method converges globally.
arXiv Detail & Related papers (2022-01-28T05:53:28Z) - Leveraging Trust for Joint Multi-Objective and Multi-Fidelity
Optimization [0.0]
This paper investigates a novel approach to Bayesian multi-objective and multi-fidelity (MOMF) optimization.
We suggest the innovative use of a trust metric to support simultaneous optimization of multiple objectives and data sources.
Our methods offer broad applicability in solving simulation problems in fields such as plasma physics and fluid dynamics.
arXiv Detail & Related papers (2021-12-27T20:55:26Z) - Batched Data-Driven Evolutionary Multi-Objective Optimization Based on
Manifold Interpolation [6.560512252982714]
We propose a framework for implementing batched data-driven evolutionary multi-objective optimization.
It is so general that any off-the-shelf evolutionary multi-objective optimization algorithms can be applied in a plug-in manner.
Our proposed framework is featured with a faster convergence and a stronger resilience to various PF shapes.
arXiv Detail & Related papers (2021-09-12T23:54:26Z) - An Empirical Study of Assumptions in Bayesian Optimisation [61.19427472792523]
In this work we rigorously analyse conventional and non-conventional assumptions inherent to Bayesian optimisation.
We conclude that the majority of hyper- parameter tuning tasks exhibit heteroscedasticity and non-stationarity.
We hope these findings may serve as guiding principles, both for practitioners and for further research in the field.
arXiv Detail & Related papers (2020-12-07T16:21:12Z) - Incorporating Expert Prior Knowledge into Experimental Design via
Posterior Sampling [58.56638141701966]
Experimenters can often acquire the knowledge about the location of the global optimum.
It is unknown how to incorporate the expert prior knowledge about the global optimum into Bayesian optimization.
An efficient Bayesian optimization approach has been proposed via posterior sampling on the posterior distribution of the global optimum.
arXiv Detail & Related papers (2020-02-26T01:57:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.