Hybridization of K-means with improved firefly algorithm for automatic
clustering in high dimension
- URL: http://arxiv.org/abs/2302.10765v1
- Date: Thu, 9 Feb 2023 18:43:10 GMT
- Title: Hybridization of K-means with improved firefly algorithm for automatic
clustering in high dimension
- Authors: Afroj Alam
- Abstract summary: We have implemented the Silhouette and Elbow methods with PCA to find an optimal number of clusters.
In the Firefly algorithm, the entire population is automatically subdivided into sub-populations that decrease the convergence rate speed and trapping to local minima.
Our study proposed an enhanced firefly, i.e., a hybridized K-means with an ODFA model for automatic clustering.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: K-means Clustering is the most well-known partitioning algorithm among all
clustering, by which we can partition the data objects very easily in to more
than one clusters. However, for K-means to choose an appropriate number of
clusters without any prior domain knowledge about the dataset is challenging,
especially in high-dimensional data objects. Hence, we have implemented the
Silhouette and Elbow methods with PCA to find an optimal number of clusters.
Also, previously, so many meta-heuristic swarm intelligence algorithms inspired
by nature have been employed to handle the automatic data clustering problem.
Firefly is efficient and robust for automatic clustering. However, in the
Firefly algorithm, the entire population is automatically subdivided into
sub-populations that decrease the convergence rate speed and trapping to local
minima in high-dimensional optimization problems. Thus, our study proposed an
enhanced firefly, i.e., a hybridized K-means with an ODFA model for automatic
clustering. The experimental part shows output and graphs of the Silhouette and
Elbow methods as well as the Firefly algorithm
Related papers
- Self-Supervised Graph Embedding Clustering [70.36328717683297]
K-means one-step dimensionality reduction clustering method has made some progress in addressing the curse of dimensionality in clustering tasks.
We propose a unified framework that integrates manifold learning with K-means, resulting in the self-supervised graph embedding framework.
arXiv Detail & Related papers (2024-09-24T08:59:51Z) - Superclustering by finding statistically significant separable groups of
optimal gaussian clusters [0.0]
The paper presents the algorithm for clustering a dataset by grouping the optimal, from the point of view of the BIC criterion.
An essential advantage of the algorithm is its ability to predict correct supercluster for new data based on already trained clusterer.
arXiv Detail & Related papers (2023-09-05T23:49:46Z) - Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
We propose a new deep graph clustering method termed Reinforcement Graph Clustering.
In our proposed method, cluster number determination and unsupervised representation learning are unified into a uniform framework.
In order to conduct feedback actions, the clustering-oriented reward function is proposed to enhance the cohesion of the same clusters and separate the different clusters.
arXiv Detail & Related papers (2023-08-13T18:12:28Z) - Instance-Optimal Cluster Recovery in the Labeled Stochastic Block Model [79.46465138631592]
We devise an efficient algorithm that recovers clusters using the observed labels.
We present Instance-Adaptive Clustering (IAC), the first algorithm whose performance matches these lower bounds both in expectation and with high probability.
arXiv Detail & Related papers (2023-06-18T08:46:06Z) - Hard Regularization to Prevent Deep Online Clustering Collapse without
Data Augmentation [65.268245109828]
Online deep clustering refers to the joint use of a feature extraction network and a clustering model to assign cluster labels to each new data point or batch as it is processed.
While faster and more versatile than offline methods, online clustering can easily reach the collapsed solution where the encoder maps all inputs to the same point and all are put into a single cluster.
We propose a method that does not require data augmentation, and that, differently from existing methods, regularizes the hard assignments.
arXiv Detail & Related papers (2023-03-29T08:23:26Z) - Hybrid Fuzzy-Crisp Clustering Algorithm: Theory and Experiments [0.0]
We propose a hybrid fuzzy-crisp clustering algorithm based on a target function combining linear and quadratic terms of the membership function.
In this algorithm, the membership of a data point to a cluster is automatically set to exactly zero if the data point is sufficiently'' far from the cluster center.
The proposed algorithm is demonstrated to outperform the conventional methods on imbalanced datasets and can be competitive on more balanced datasets.
arXiv Detail & Related papers (2023-03-25T05:27:26Z) - Convex Clustering through MM: An Efficient Algorithm to Perform
Hierarchical Clustering [1.0589208420411012]
We propose convex clustering through majorization-minimization ( CCMM) -- an iterative algorithm that uses cluster fusions and a highly efficient updating scheme.
With a current desktop computer, CCMM efficiently solves convex clustering problems featuring over one million objects in seven-dimensional space.
arXiv Detail & Related papers (2022-11-03T15:07:51Z) - ck-means, a novel unsupervised learning method that combines fuzzy and
crispy clustering methods to extract intersecting data [1.827510863075184]
This paper proposes a method to cluster data that share the same intersections between two features or more.
The main idea of this novel method is to generate fuzzy clusters of data using a Fuzzy C-Means (FCM) algorithm.
The algorithm is also able to find the optimal number of clusters for the FCM and the k-means algorithm, according to the consistency of the clusters given by the Silhouette Index (SI)
arXiv Detail & Related papers (2022-06-17T19:29:50Z) - Swarm Intelligence for Self-Organized Clustering [6.85316573653194]
A swarm system called Databionic swarm (DBS) is introduced which is able to adapt itself to structures of high-dimensional data.
By exploiting the interrelations of swarm intelligence, self-organization and emergence, DBS serves as an alternative approach to the optimization of a global objective function in the task of clustering.
arXiv Detail & Related papers (2021-06-10T06:21:48Z) - Exact and Approximate Hierarchical Clustering Using A* [51.187990314731344]
We introduce a new approach based on A* search for clustering.
We overcome the prohibitively large search space by combining A* with a novel emphtrellis data structure.
We empirically demonstrate that our method achieves substantially higher quality results than baselines for a particle physics use case and other clustering benchmarks.
arXiv Detail & Related papers (2021-04-14T18:15:27Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
Existing scalable hierarchical clustering methods sacrifice quality for speed.
We present a scalable, agglomerative method for hierarchical clustering that does not sacrifice quality and scales to billions of data points.
arXiv Detail & Related papers (2020-10-22T15:58:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.