Graph-Time Convolutional Neural Networks: Architecture and Theoretical
Analysis
- URL: http://arxiv.org/abs/2206.15174v1
- Date: Thu, 30 Jun 2022 10:20:52 GMT
- Title: Graph-Time Convolutional Neural Networks: Architecture and Theoretical
Analysis
- Authors: Mohammad Sabbaqi and Elvin Isufi
- Abstract summary: We introduce Graph-Time Convolutional Neural Networks (GTCNNs) as principled architecture to aid learning.
The approach can work with any type of product graph and we also introduce a parametric graph to learn also the producttemporal coupling.
Extensive numerical results on benchmark corroborate our findings and show the GTCNN compares favorably with state-of-the-art solutions.
- Score: 12.995632804090198
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Devising and analyzing learning models for spatiotemporal network data is of
importance for tasks including forecasting, anomaly detection, and multi-agent
coordination, among others. Graph Convolutional Neural Networks (GCNNs) are an
established approach to learn from time-invariant network data. The graph
convolution operation offers a principled approach to aggregate multiresolution
information. However, extending the convolution principled learning and
respective analysis to the spatiotemporal domain is challenging because
spatiotemporal data have more intrinsic dependencies. Hence, a higher
flexibility to capture jointly the spatial and the temporal dependencies is
required to learn meaningful higher-order representations. Here, we leverage
product graphs to represent the spatiotemporal dependencies in the data and
introduce Graph-Time Convolutional Neural Networks (GTCNNs) as a principled
architecture to aid learning. The proposed approach can work with any type of
product graph and we also introduce a parametric product graph to learn also
the spatiotemporal coupling. The convolution principle further allows a similar
mathematical tractability as for GCNNs. In particular, the stability result
shows GTCNNs are stable to spatial perturbations but there is an implicit
trade-off between discriminability and robustness; i.e., the more complex the
model, the less stable. Extensive numerical results on benchmark datasets
corroborate our findings and show the GTCNN compares favorably with
state-of-the-art solutions. We anticipate the GTCNN to be a starting point for
more sophisticated models that achieve good performance but are also
fundamentally grounded.
Related papers
- Self-Supervised Graph Neural Networks for Enhanced Feature Extraction in Heterogeneous Information Networks [16.12856816023414]
This paper explores the applications and challenges of graph neural networks (GNNs) in processing complex graph data brought about by the rapid development of the Internet.
By introducing a self-supervisory mechanism, it is expected to improve the adaptability of existing models to the diversity and complexity of graph data.
arXiv Detail & Related papers (2024-10-23T07:14:37Z) - DTFormer: A Transformer-Based Method for Discrete-Time Dynamic Graph Representation Learning [38.53424185696828]
The representation learning of Discrete-Time Dynamic Graphs (DTDGs) has been extensively applied to model the dynamics of temporally changing entities and their evolving connections.
This paper introduces a novel representation learning method DTFormer for DTDGs, pivoting from the traditional GNN+RNN framework to a Transformer-based architecture.
arXiv Detail & Related papers (2024-07-26T05:46:23Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
Graph neural networks (GNNs) demonstrate a robust capability for representation learning on graphs with complex structures.
A novel GNNs framework, dubbed Decoupled Graph Neural Networks (DGNN), is introduced to obtain a more comprehensive embedding representation of nodes.
Experimental results conducted on several graph benchmark datasets verify DGNN's superiority in node classification task.
arXiv Detail & Related papers (2024-01-28T06:43:13Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
We propose a novel Dynamic Diffusion-al Graph Neural Network (DVGNN) fortemporal forecasting.
The proposed DVGNN model outperforms state-of-the-art approaches and achieves outstanding Root Mean Squared Error result.
arXiv Detail & Related papers (2023-05-16T11:38:19Z) - Space-Time Graph Neural Networks with Stochastic Graph Perturbations [100.31591011966603]
Space-time graph neural networks (ST-GNNs) learn efficient graph representations of time-varying data.
In this paper we revisit the properties of ST-GNNs and prove that they are stable to graph stabilitys.
Our analysis suggests that ST-GNNs are suitable for transfer learning on time-varying graphs.
arXiv Detail & Related papers (2022-10-28T16:59:51Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
We propose a graph convolutional relationship between the observed and latent graphs, and formulate the graph learning task as a network inverse (deconvolution) problem.
In lieu of eigendecomposition-based spectral methods, we unroll and truncate proximal gradient iterations to arrive at a parameterized neural network architecture that we call a Graph Deconvolution Network (GDN)
GDNs can learn a distribution of graphs in a supervised fashion, perform link prediction or edge-weight regression tasks by adapting the loss function, and they are inherently inductive.
arXiv Detail & Related papers (2022-05-19T14:08:15Z) - Deep Architecture Connectivity Matters for Its Convergence: A
Fine-Grained Analysis [94.64007376939735]
We theoretically characterize the impact of connectivity patterns on the convergence of deep neural networks (DNNs) under gradient descent training.
We show that by a simple filtration on "unpromising" connectivity patterns, we can trim down the number of models to evaluate.
arXiv Detail & Related papers (2022-05-11T17:43:54Z) - Spatio-Temporal Latent Graph Structure Learning for Traffic Forecasting [6.428566223253948]
We propose a new traffic forecasting framework--S-Temporal Latent Graph Structure Learning networks (ST-LGSL)
The model employs a graph based on Multilayer perceptron and K-Nearest Neighbor, which learns the latent graph topological information from the entire data.
With the dependencies-kNN based on ground-truth adjacency matrix and similarity metric in kNN, ST-LGSL aggregates the top focusing on geography and node similarity.
arXiv Detail & Related papers (2022-02-25T10:02:49Z) - Exploiting Spiking Dynamics with Spatial-temporal Feature Normalization
in Graph Learning [9.88508686848173]
Biological spiking neurons with intrinsic dynamics underlie the powerful representation and learning capabilities of the brain.
Despite recent tremendous progress in spiking neural networks (SNNs) for handling Euclidean-space tasks, it still remains challenging to exploit SNNs in processing non-Euclidean-space data.
Here we present a general spike-based modeling framework that enables the direct training of SNNs for graph learning.
arXiv Detail & Related papers (2021-06-30T11:20:16Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
This paper introduces a tensor-graph convolutional network (TGCN) for scalable semi-supervised learning (SSL) from data associated with a collection of graphs, that are represented by a tensor.
The proposed architecture achieves markedly improved performance relative to standard GCNs, copes with state-of-the-art adversarial attacks, and leads to remarkable SSL performance over protein-to-protein interaction networks.
arXiv Detail & Related papers (2020-03-15T02:33:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.