Deep Neural Networks for Encrypted Inference with TFHE
- URL: http://arxiv.org/abs/2302.10906v1
- Date: Mon, 13 Feb 2023 09:53:31 GMT
- Title: Deep Neural Networks for Encrypted Inference with TFHE
- Authors: Andrei Stoian and Jordan Frery and Roman Bredehoft and Luis Montero
and Celia Kherfallah and Benoit Chevallier-Mames
- Abstract summary: Fully homomorphic encryption (FHE) is an encryption method that allows to perform computation on encrypted data, without decryption.
TFHE preserves the privacy of the users of online services that handle sensitive data, such as health data, biometrics, credit scores and other personal information.
We show how to construct Deep Neural Networks (DNNs) that are compatible with the constraints of TFHE, an FHE scheme that allows arbitrary depth computation circuits.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fully homomorphic encryption (FHE) is an encryption method that allows to
perform computation on encrypted data, without decryption. FHE preserves the
privacy of the users of online services that handle sensitive data, such as
health data, biometrics, credit scores and other personal information. A common
way to provide a valuable service on such data is through machine learning and,
at this time, Neural Networks are the dominant machine learning model for
unstructured data. In this work we show how to construct Deep Neural Networks
(DNN) that are compatible with the constraints of TFHE, an FHE scheme that
allows arbitrary depth computation circuits. We discuss the constraints and
show the architecture of DNNs for two computer vision tasks. We benchmark the
architectures using the Concrete stack, an open-source implementation of TFHE.
Related papers
- Hyperdimensional Computing as a Rescue for Efficient Privacy-Preserving
Machine Learning-as-a-Service [9.773163665697057]
Homomorphic encryption (HE) is a promising technique to address this adversity.
With HE, the service provider can take encrypted data as a query and run the model without decrypting it.
We show hyperdimensional computing can be a rescue for privacy-preserving machine learning over encrypted data.
arXiv Detail & Related papers (2023-08-17T00:25:17Z) - SoK: Privacy-preserving Deep Learning with Homomorphic Encryption [2.9069679115858755]
homomorphic encryption (HE) can be performed on encrypted data without revealing its content.
We take an in-depth look at approaches that combine neural networks with HE for privacy preservation.
We find numerous challenges to HE based privacy-preserving deep learning such as computational overhead, usability, and limitations posed by the encryption schemes.
arXiv Detail & Related papers (2021-12-23T22:03:27Z) - EDLaaS; Fully Homomorphic Encryption Over Neural Network Graphs [7.195443855063635]
We use the 4th generation Cheon, Kim, Kim and Song (CKKS) FHE scheme over fixed points provided by the Microsoft Simple Encrypted Arithmetic Library (MS-SEAL)
We find that FHE is not a panacea for all privacy preserving machine learning (PPML) problems, and that certain limitations still remain, such as model training.
We focus on convolutional neural networks (CNNs), fashion-MNIST, and levelled FHE operations.
arXiv Detail & Related papers (2021-10-26T12:43:35Z) - Sphynx: ReLU-Efficient Network Design for Private Inference [49.73927340643812]
We focus on private inference (PI), where the goal is to perform inference on a user's data sample using a service provider's model.
Existing PI methods for deep networks enable cryptographically secure inference with little drop in functionality.
This paper presents Sphynx, a ReLU-efficient network design method based on micro-search strategies for convolutional cell design.
arXiv Detail & Related papers (2021-06-17T18:11:10Z) - NeuraCrypt: Hiding Private Health Data via Random Neural Networks for
Public Training [64.54200987493573]
We propose NeuraCrypt, a private encoding scheme based on random deep neural networks.
NeuraCrypt encodes raw patient data using a randomly constructed neural network known only to the data-owner.
We show that NeuraCrypt achieves competitive accuracy to non-private baselines on a variety of x-ray tasks.
arXiv Detail & Related papers (2021-06-04T13:42:21Z) - TenSEAL: A Library for Encrypted Tensor Operations Using Homomorphic
Encryption [0.0]
We present TenSEAL, an open-source library for Privacy-Preserving Machine Learning using Homomorphic Encryption.
We show that an encrypted convolutional neural network can be evaluated in less than a second, using less than half a megabyte of communication.
arXiv Detail & Related papers (2021-04-07T14:32:38Z) - Deep Parametric Continuous Convolutional Neural Networks [92.87547731907176]
Parametric Continuous Convolution is a new learnable operator that operates over non-grid structured data.
Our experiments show significant improvement over the state-of-the-art in point cloud segmentation of indoor and outdoor scenes.
arXiv Detail & Related papers (2021-01-17T18:28:23Z) - Towards Scalable and Privacy-Preserving Deep Neural Network via
Algorithmic-Cryptographic Co-design [28.789702559193675]
We propose SPNN - a Scalable and Privacy-preserving deep Neural Network learning framework.
From cryptographic perspective, we propose using two types of cryptographic techniques, i.e., secret sharing and homomorphic encryption.
Experimental results conducted on real-world datasets demonstrate the superiority of SPNN.
arXiv Detail & Related papers (2020-12-17T02:26:16Z) - Faster Secure Data Mining via Distributed Homomorphic Encryption [108.77460689459247]
Homomorphic Encryption (HE) is receiving more and more attention recently for its capability to do computations over the encrypted field.
We propose a novel general distributed HE-based data mining framework towards one step of solving the scaling problem.
We verify the efficiency and effectiveness of our new framework by testing over various data mining algorithms and benchmark data-sets.
arXiv Detail & Related papers (2020-06-17T18:14:30Z) - A Privacy-Preserving Distributed Architecture for
Deep-Learning-as-a-Service [68.84245063902908]
This paper introduces a novel distributed architecture for deep-learning-as-a-service.
It is able to preserve the user sensitive data while providing Cloud-based machine and deep learning services.
arXiv Detail & Related papers (2020-03-30T15:12:03Z) - CryptoSPN: Privacy-preserving Sum-Product Network Inference [84.88362774693914]
We present a framework for privacy-preserving inference of sum-product networks (SPNs)
CryptoSPN achieves highly efficient and accurate inference in the order of seconds for medium-sized SPNs.
arXiv Detail & Related papers (2020-02-03T14:49:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.