論文の概要: In-context Example Selection with Influences
- arxiv url: http://arxiv.org/abs/2302.11042v2
- Date: Mon, 5 Jun 2023 17:49:58 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-07 02:45:15.981468
- Title: In-context Example Selection with Influences
- Title(参考訳): 影響のある文脈内サンプル選択
- Authors: Tai Nguyen and Eric Wong
- Abstract要約: In-context Learning(ICL)は、大規模言語モデル(LLM)から生まれた強力なパラダイムである。
この作業では、$textitin-context influences$を使用して、インコンテキストの例から、わずかなショットICLのパフォーマンスを直接分析します。
- 参考スコア(独自算出の注目度): 8.058815264255152
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In-context learning (ICL) is a powerful paradigm emerged from large language
models (LLMs). Despite its promises, ICL performance is known to be highly
sensitive to input examples. In this work, we use $\textit{in-context
influences}$ to analyze few-shot ICL performance directly from the in-context
examples. Our proposed influence-based example selection method can identify
both positive and negative examples, outperforming several baselines when
evaluated on 9 SuperGLUE tasks. Our analysis uncovers up to a $16.3\%$
performance gap between using the most negative in-context examples compared to
the most positive. In a case study, we apply our influence-based framework to
quantify the phenomena of recency bias in example ordering for few-shot ICL.
- Abstract(参考訳): In-context Learning(ICL)は、大規模言語モデル(LLM)から生まれた強力なパラダイムである。
その約束にもかかわらず、iclのパフォーマンスは入力例に非常に敏感であることが知られている。
この作業では、$\textit{in-context influences}$を使用して、in-context例から直接、少数のiclパフォーマンスを分析します。
提案手法は,9つのSuperGLUEタスクで評価した場合に,正と負の両方のサンプルを抽出し,いくつかのベースラインを達成できる。
私たちの分析では、最もネガティブなインコンテキストの例と最もポジティブな例とのパフォーマンスギャップが16.3 %まで明らかになった。
ケーススタディでは,数発のiclの注文などにおいて,直交バイアスの現象を定量化するために,影響に基づく枠組みを適用した。
関連論文リスト
- In-Context Learning with Long-Context Models: An In-Depth Exploration [96.1389740719691]
大規模なラベル空間を持つ多くのデータセットでは、数百から数千のデモでパフォーマンスが向上し続けています。
長いコンテキストのICLは驚くほど効果的であるが、ほとんどの利益は同様の例に答えることから得られている。
論文 参考訳(メタデータ) (2024-04-30T21:06:52Z) - Bayesian Example Selection Improves In-Context Learning for Speech, Text, and Visual Modalities [15.931776592470895]
大規模言語モデル(LLM)は、文脈内学習(ICL)を通じて新しいタスクに適応できる
本稿では,ICLのための新しいベイジアン・イン・コンテクスト・サンプル・セレクション法(ByCS)を提案する。
論文 参考訳(メタデータ) (2024-04-23T03:42:48Z) - ParaICL: Towards Robust Parallel In-Context Learning [74.38022919598443]
大規模言語モデル(LLM)が自然言語処理の標準となっている。
インコンテキスト・ラーニング(ICL)は、いくつかの実演例の選択に依存している。
パラレルインコンテキスト学習(ParaICL)という新しい手法を提案する。
論文 参考訳(メタデータ) (2024-03-31T05:56:15Z) - $Se^2$: Sequential Example Selection for In-Context Learning [83.17038582333716]
インコンテキスト学習(ICL)のための大規模言語モデル(LLM)は、実演例によって起動する必要がある。
以前の研究は、主に"select then organize"パラダイムに従って、ICLの例の選択を幅広く検討してきた。
本稿では,この問題を$Se$quential $Se$lection問題として定式化し,シーケンシャル・アウェア法である$Se2$を導入する。
論文 参考訳(メタデータ) (2024-02-21T15:35:04Z) - Not All Demonstration Examples are Equally Beneficial: Reweighting
Demonstration Examples for In-Context Learning [32.29118942982609]
大規模言語モデル(LLM)は、最近、モデルをスケールアップしてICL(In-Context Learning)能力を獲得した。
本稿では,実演例における平均重量の決め方とICLにおける適用方法について検討する。
8つのテキスト分類タスクの実験結果から,本手法は従来のICLよりも高い性能を示した。
論文 参考訳(メタデータ) (2023-10-12T13:15:11Z) - RetICL: Sequential Retrieval of In-Context Examples with Reinforcement Learning [53.52699766206808]
In-Context Learning (RetICL) のための検索式を提案する。
RetICLは数学用語の問題解決と科学的質問応答のタスクに基づいて評価し,一貫した性能や一致,学習可能なベースラインを示す。
論文 参考訳(メタデータ) (2023-05-23T20:15:56Z) - Active Learning Principles for In-Context Learning with Large Language
Models [65.09970281795769]
本稿では,アクティブ・ラーニング・アルゴリズムが,文脈内学習における効果的な実演選択手法としてどのように機能するかを検討する。
ALによる文脈内サンプル選択は,不確実性の低い高品質な事例を優先し,試験例と類似性を有することを示す。
論文 参考訳(メタデータ) (2023-05-23T17:16:04Z) - Compositional Exemplars for In-context Learning [21.961094715261133]
大規模な事前学習言語モデル(LM)は、印象的なインコンテキスト学習(ICL)能力を示している。
本稿では,CEIL (Compositional Exemplars for In-context Learning) を提案する。
我々は、感情分析、パラフレーズ検出、自然言語推論、コモンセンス推論、オープンドメイン質問応答、コード生成、意味解析を含む7つの異なるNLPタスクから、CEILを12の分類および生成データセットで検証する。
論文 参考訳(メタデータ) (2023-02-11T14:02:08Z) - Investigating the Role of Negatives in Contrastive Representation
Learning [59.30700308648194]
ノイズコントラスト学習は教師なし表現学習の一般的な手法である。
我々は、これらのパラメータの1つの役割の曖昧さ、すなわち負の例の数に焦点をあてる。
結果が我々の理論と広く一致しているのに対して、我々の視覚実験はより悪質であり、性能は時々負の数に敏感である。
論文 参考訳(メタデータ) (2021-06-18T06:44:16Z) - RelatIF: Identifying Explanatory Training Examples via Relative
Influence [13.87851325824883]
インフルエンス関数を使用して、関連するトレーニング例を特定し、機械学習モデルの予測を"説明"することを望んでいます。
本稿では,グローバルな影響に制約を課す最適化目標を用いて,関連するトレーニング事例を選択するための新しい基準であるRelatIFを紹介する。
経験的評価では、RelatIFで返される例は影響関数を用いた例に比べて直感的であることが判明した。
論文 参考訳(メタデータ) (2020-03-25T20:59:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。