論文の概要: RelatIF: Identifying Explanatory Training Examples via Relative
Influence
- arxiv url: http://arxiv.org/abs/2003.11630v1
- Date: Wed, 25 Mar 2020 20:59:54 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-20 02:56:53.728115
- Title: RelatIF: Identifying Explanatory Training Examples via Relative
Influence
- Title(参考訳): RelatIF: 相対的影響による説明的訓練例の特定
- Authors: Elnaz Barshan, Marc-Etienne Brunet, Gintare Karolina Dziugaite
- Abstract要約: インフルエンス関数を使用して、関連するトレーニング例を特定し、機械学習モデルの予測を"説明"することを望んでいます。
本稿では,グローバルな影響に制約を課す最適化目標を用いて,関連するトレーニング事例を選択するための新しい基準であるRelatIFを紹介する。
経験的評価では、RelatIFで返される例は影響関数を用いた例に比べて直感的であることが判明した。
- 参考スコア(独自算出の注目度): 13.87851325824883
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we focus on the use of influence functions to identify relevant
training examples that one might hope "explain" the predictions of a machine
learning model. One shortcoming of influence functions is that the training
examples deemed most "influential" are often outliers or mislabelled, making
them poor choices for explanation. In order to address this shortcoming, we
separate the role of global versus local influence. We introduce RelatIF, a new
class of criteria for choosing relevant training examples by way of an
optimization objective that places a constraint on global influence. RelatIF
considers the local influence that an explanatory example has on a prediction
relative to its global effects on the model. In empirical evaluations, we find
that the examples returned by RelatIF are more intuitive when compared to those
found using influence functions.
- Abstract(参考訳): 本研究では,機械学習モデルの予測を"説明"することを希望する,関連するトレーニング例を特定するための影響関数の利用に焦点を当てる。
影響関数の欠点の1つは、最も「知的な」と見なされる訓練例は、しばしば外見や誤認であり、説明のための選択肢が乏しいことである。
この欠点に対処するために、我々はグローバルとローカルの影響力の役割を分離する。
本稿では,グローバルな影響に制約を課す最適化目標を用いて,関連するトレーニング事例を選択するための新しい基準であるRelatIFを紹介する。
RelatIFは、説明例がモデルに対するその世界的影響に対する予測に与える局所的な影響を考察している。
経験的評価では、RelatIFで返される例は影響関数を用いた例に比べて直感的であることが判明した。
関連論文リスト
- Influence Functions for Scalable Data Attribution in Diffusion Models [52.92223039302037]
拡散モデルは、生成的モデリングに大きな進歩をもたらした。
しかし、彼らの普及はデータ属性と解釈可能性に関する課題を引き起こす。
本稿では,テキスト・インフルエンス・ファンクション・フレームワークを開発することにより,このような課題に対処することを目的とする。
論文 参考訳(メタデータ) (2024-10-17T17:59:02Z) - Do Influence Functions Work on Large Language Models? [10.463762448166714]
影響関数は、個々のトレーニングデータポイントがモデルの予測に与える影響を定量化することを目的としている。
我々は,複数のタスクにまたがる影響関数を評価し,ほとんどの設定において不整合なパフォーマンスを示す。
論文 参考訳(メタデータ) (2024-09-30T06:50:18Z) - Most Influential Subset Selection: Challenges, Promises, and Beyond [9.479235005673683]
我々は,最も集団的影響の大きいトレーニングサンプルのサブセットを特定することを目的とした,MISS(Most Influential Subset Selection)問題について検討する。
我々は、MISにおける一般的なアプローチを包括的に分析し、その強みと弱点を解明する。
本稿では,これらを反復的に適用した適応バージョンが,試料間の相互作用を効果的に捕捉できることを実証する。
論文 参考訳(メタデータ) (2024-09-25T20:00:23Z) - If Influence Functions are the Answer, Then What is the Question? [7.873458431535409]
影響関数は、モデルの学習パラメータに対する1つのトレーニングデータポイントの除去の効果を効率的に推定する。
影響推定は線形モデルの残余再トレーニングとよく一致しているが、最近の研究では、ニューラルネットワークではこのアライメントが不十分であることが示されている。
論文 参考訳(メタデータ) (2022-09-12T16:17:43Z) - An Additive Instance-Wise Approach to Multi-class Model Interpretation [53.87578024052922]
解釈可能な機械学習は、ブラックボックスシステムの特定の予測を駆動する要因に関する洞察を提供する。
既存の手法は主に、局所的な加法的あるいはインスタンス的なアプローチに従う説明的入力特徴の選択に重点を置いている。
本研究は,両手法の長所を生かし,複数の対象クラスに対する局所的な説明を同時に学習するためのグローバルフレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-07T06:50:27Z) - Understanding Instance-Level Impact of Fairness Constraints [12.866655972682254]
公正な制約が課された場合のトレーニング例の影響について検討する。
重みのあるデータ例のサブセットでのトレーニングは、精度のトレードオフによって公平性違反の低減につながることが分かっています。
論文 参考訳(メタデータ) (2022-06-30T17:31:33Z) - Revisiting Methods for Finding Influential Examples [2.094022863940315]
テスト時間決定に有効なトレーニング例を見つける方法が提案されている。
本稿では,これらの手法がすべて不安定であることを示す。
本稿では, 毒素攻撃を検知する能力によって, このような説明を評価することを提案する。
論文 参考訳(メタデータ) (2021-11-08T18:00:06Z) - Efficient Estimation of Influence of a Training Instance [56.29080605123304]
本稿では,ニューラルネットワークモデルに対するトレーニングインスタンスの影響を効率的に推定する手法を提案する。
このメソッドは、サブネットワークをゼロマスクし、サブネットワークが各トレーニングインスタンスを学習するのを防ぎます。
提案手法は, 学習の影響を捉え, 誤り予測の解釈性を高め, 一般化改善のための訓練データセットをクリーン化できることを実証する。
論文 参考訳(メタデータ) (2020-12-08T04:31:38Z) - Understanding Adversarial Examples from the Mutual Influence of Images
and Perturbations [83.60161052867534]
クリーンな画像と敵の摂動を遠ざけることで敵の例を分析し,その相互への影響を分析した。
以上の結果から,画像と普遍摂動の関係に対する新たな視点が示唆された。
我々は、オリジナルトレーニングデータを活用することなく、目標とするユニバーサルアタックの挑戦的なタスクを最初に達成した人物です。
論文 参考訳(メタデータ) (2020-07-13T05:00:09Z) - Influence Functions in Deep Learning Are Fragile [52.31375893260445]
影響関数は、テスト時間予測におけるサンプルの効果を近似する。
影響評価は浅いネットワークでは かなり正確です
ヘッセン正則化は、高品質な影響推定を得るために重要である。
論文 参考訳(メタデータ) (2020-06-25T18:25:59Z) - Explaining Black Box Predictions and Unveiling Data Artifacts through
Influence Functions [55.660255727031725]
影響関数は、影響力のあるトレーニング例を特定することによって、モデルの判断を説明する。
本稿では,代表課題における影響関数と共通単語順応法の比較を行う。
我々は,学習データ中の成果物を明らかにすることができる影響関数に基づく新しい尺度を開発した。
論文 参考訳(メタデータ) (2020-05-14T00:45:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。