論文の概要: Multi-Head Feature Pyramid Networks for Breast Mass Detection
- arxiv url: http://arxiv.org/abs/2302.11106v1
- Date: Wed, 22 Feb 2023 03:02:52 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-23 16:26:04.333836
- Title: Multi-Head Feature Pyramid Networks for Breast Mass Detection
- Title(参考訳): 乳房質量検出のためのマルチヘッド特徴ピラミッドネットワーク
- Authors: Hexiang Zhang, Zhenghua Xu, Dan Yao, Shuo Zhang, Junyang Chen, Thomas
Lukasiewicz
- Abstract要約: 本稿では,MHFPN (Multi-head Feature pyramid Module) を提案する。
実験により、SOTA検出ベースラインと比較して、一般的に使用されるInbreastデータセットでは、我々の手法は6.58%(AP@50では6.58%、TPR@50では5.4%(TPR@50では5.4%)の改善が見られた。
- 参考スコア(独自算出の注目度): 48.24995569980701
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Analysis of X-ray images is one of the main tools to diagnose breast cancer.
The ability to quickly and accurately detect the location of masses from the
huge amount of image data is the key to reducing the morbidity and mortality of
breast cancer. Currently, the main factor limiting the accuracy of breast mass
detection is the unequal focus on the mass boxes, leading the network to focus
too much on larger masses at the expense of smaller ones. In the paper, we
propose the multi-head feature pyramid module (MHFPN) to solve the problem of
unbalanced focus of target boxes during feature map fusion and design a
multi-head breast mass detection network (MBMDnet). Experimental studies show
that, comparing to the SOTA detection baselines, our method improves by 6.58%
(in AP@50) and 5.4% (in TPR@50) on the commonly used INbreast dataset, while
about 6-8% improvements (in AP@20) are also observed on the public MIAS and
BCS-DBT datasets.
- Abstract(参考訳): X線画像解析は乳癌を診断する主要なツールの1つである。
大量の画像データから塊の位置を迅速かつ正確に検出する能力は、乳癌の病状と死亡率を減少させる鍵となる。
現在、乳房の質量検出の精度を制限している主な要因は、質量箱に不平等な焦点をあてることであり、ネットワークはより小さな質量を犠牲にしすぎている。
本稿では,MHFPN(Multi-head feature pyramid module)を提案し,特徴マップ融合時のターゲットボックスのアンバランスな焦点の問題を解決するとともに,マルチヘッド乳房マス検出ネットワーク(MBMDnet)を設計する。
実験では,SOTA検出ベースラインと比較して,一般的に使用されているINbreastデータセットでは6.58%(AP@50),5.4%(TPR@50),約6~8%(AP@20)の改善がMIASおよびBCS-DBTデータセットでは観測されている。
関連論文リスト
- High-resolution synthesis of high-density breast mammograms: Application
to improved fairness in deep learning based mass detection [48.88813637974911]
深層学習に基づくコンピュータ支援検出システムは乳癌検出において優れた性能を示した。
高密度の乳房は、高密度の組織がマスを覆ったりシミュレートしたりできるため、検出性能が劣っている。
本研究は,高密度乳房における高密度フルフィールドデジタルマンモグラムを用いた質量検出性能の向上を目的とする。
論文 参考訳(メタデータ) (2022-09-20T15:57:12Z) - Federated Learning Enables Big Data for Rare Cancer Boundary Detection [98.5549882883963]
6大陸にわたる71の医療機関のデータを含む,これまでで最大のフェデレーテッドML研究の結果を報告する。
グリオ芽腫の稀な疾患に対する腫瘍境界自動検出装置を作製した。
当科では, 外科的に標的とした腫瘍の悪性度を高めるために, 33%の改善率を示し, 腫瘍全体に対する23%の改善率を示した。
論文 参考訳(メタデータ) (2022-04-22T17:27:00Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
乳腺腫瘍の分類と分別を同時に行うための,効率的で軽量な学習アーキテクチャを提案する。
腫瘍分類ネットワークにセグメンテーションタスクを組み込むことにより,腫瘍領域に着目したバックボーンネットワークで表現を学習する。
腫瘍分類の精度、感度、特異性はそれぞれ88.6%、94.1%、85.3%である。
論文 参考訳(メタデータ) (2022-01-13T05:24:40Z) - Learned super resolution ultrasound for improved breast lesion
characterization [52.77024349608834]
超高分解能超音波局在顕微鏡は毛細血管レベルでの微小血管のイメージングを可能にする。
この作業では、これらの課題に対処するために、信号構造を効果的に活用するディープニューラルネットワークアーキテクチャを使用します。
トレーニングしたネットワークを利用することで,従来のPSF知識を必要とせず,UCAの分離性も必要とせず,短時間で微小血管構造を復元する。
論文 参考訳(メタデータ) (2021-07-12T09:04:20Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Deep-LIBRA: Artificial intelligence method for robust quantification of
breast density with independent validation in breast cancer risk assessment [2.0369879867185143]
現在の連邦法では、乳房検診中の女性全員の乳房密度の報告を義務付けている。
本稿では,デジタルマンモグラムから乳房比密度(PD)を推定する人工知能(AI)手法を提案する。
論文 参考訳(メタデータ) (2020-11-13T15:21:17Z) - Breast mass detection in digital mammography based on anchor-free
architecture [0.4568777157687961]
BMassDNet(Breast Mass Detection Network)と呼ばれる一段階の物体検出アーキテクチャを提案する。
BMassDNetはアンカーフリーで特徴ピラミッドに基づいており、異なる大きさの乳房の質量を検出する。
提案するBMassDNetは,現在最上位の手法よりも競合検出性能が高いことを示す。
論文 参考訳(メタデータ) (2020-09-02T07:11:16Z) - Breast Cancer Detection Using Convolutional Neural Networks [0.0]
エチオピアでは女性がん患者の34%を占める乳がんが一般的である。
深層学習技術は医療画像分析の分野に革命をもたらしている。
本モデルは,マンモグラフィ(MG)画像において,腫瘤領域を検出し,良性または悪性の異常に分類する。
論文 参考訳(メタデータ) (2020-03-17T19:41:00Z) - Learning from Suspected Target: Bootstrapping Performance for Breast
Cancer Detection in Mammography [6.323318523772466]
対象領域の選択と訓練を行う新しいサンプリング手順とともに,新しいトップ可能性損失を導入する。
まず,提案手法をプライベートな高密度マンモグラフィーデータセット上で検証する。
以上の結果から,本手法は偽陽性率を大幅に低減し,質量型癌検出では0.25倍の特異性を示した。
論文 参考訳(メタデータ) (2020-03-01T09:04:24Z) - Two-stage multi-scale breast mass segmentation for full mammogram
analysis without user intervention [2.7490008316742096]
マンモグラフィーは乳がんの早期発見と診断に使用される主要な画像モダリティである。
各種の乳腺異常のうち,乳腺癌では腫瘤が最も重要な臨床所見である。
高分解能フルマンモグラムから正確な質量輪郭を提供する2段階のマルチスケールパイプラインを提案する。
論文 参考訳(メタデータ) (2020-02-27T13:16:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。