論文の概要: Breast mass detection in digital mammography based on anchor-free
architecture
- arxiv url: http://arxiv.org/abs/2009.00857v1
- Date: Wed, 2 Sep 2020 07:11:16 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-22 19:45:41.058231
- Title: Breast mass detection in digital mammography based on anchor-free
architecture
- Title(参考訳): アンカーフリーアーキテクチャに基づくデジタルマンモグラフィーにおける乳房腫瘤の検出
- Authors: Haichao Cao
- Abstract要約: BMassDNet(Breast Mass Detection Network)と呼ばれる一段階の物体検出アーキテクチャを提案する。
BMassDNetはアンカーフリーで特徴ピラミッドに基づいており、異なる大きさの乳房の質量を検出する。
提案するBMassDNetは,現在最上位の手法よりも競合検出性能が高いことを示す。
- 参考スコア(独自算出の注目度): 0.4568777157687961
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Background and Objective: Accurate detection of breast masses in mammography
images is critical to diagnose early breast cancer, which can greatly improve
the patients survival rate. However, it is still a big challenge due to the
heterogeneity of breast masses and the complexity of their surrounding
environment.Methods: To address these problems, we propose a one-stage object
detection architecture, called Breast Mass Detection Network (BMassDNet), based
on anchor-free and feature pyramid which makes the detection of breast masses
of different sizes well adapted. We introduce a truncation normalization method
and combine it with adaptive histogram equalization to enhance the contrast
between the breast mass and the surrounding environment. Meanwhile, to solve
the overfitting problem caused by small data size, we propose a natural
deformation data augmentation method and mend the train data dynamic updating
method based on the data complexity to effectively utilize the limited data.
Finally, we use transfer learning to assist the training process and to improve
the robustness of the model ulteriorly.Results: On the INbreast dataset, each
image has an average of 0.495 false positives whilst the recall rate is 0.930;
On the DDSM dataset, when each image has 0.599 false positives, the recall rate
reaches 0.943.Conclusions: The experimental results on datasets INbreast and
DDSM show that the proposed BMassDNet can obtain competitive detection
performance over the current top ranked methods.
- Abstract(参考訳): 背景と目的:乳房画像における乳房腫瘤の正確な検出は早期乳癌の診断に重要であり,患者の生存率を大幅に向上させる。
しかし, 乳房の異質性や周囲環境の複雑さのため, いまだに大きな課題である。これらの問題に対処するために, 乳房量検出ネットワーク (BMassDNet) と呼ばれる, アンカーフリーで特徴的ピラミッドをベースとした一段階の物体検出アーキテクチャを提案する。
そこで我々は,乳房と周囲環境のコントラストを高めるために,トラクション正規化法を導入し,適応的ヒストグラム等化と組み合わせた。
一方,データサイズが小さいことによる過剰フィッティング問題を解決するために,自然変形データ拡張法を提案し,データ複雑性に基づく列車データ動的更新法を整備し,限られたデータを有効に活用する。
Finally, we use transfer learning to assist the training process and to improve the robustness of the model ulteriorly.Results: On the INbreast dataset, each image has an average of 0.495 false positives whilst the recall rate is 0.930; On the DDSM dataset, when each image has 0.599 false positives, the recall rate reaches 0.943.Conclusions: The experimental results on datasets INbreast and DDSM show that the proposed BMassDNet can obtain competitive detection performance over the current top ranked methods.
関連論文リスト
- D-MASTER: Mask Annealed Transformer for Unsupervised Domain Adaptation in Breast Cancer Detection from Mammograms [5.00208619516796]
乳がん検診におけるUnsupervised Domain Adaptation (uda) の問題点に着目した。
近年の進歩により、マスク付き画像モデリングがUDAの頑健な前提課題となっていることが示されている。
クロスドメインBCDMに適用すると、これらのテクニックは、質量、非対称性、微小石灰化などの乳房異常に悩まされる。
これは多くの場合、画像当たりの偽陽性(FPI)が増加し、通常そのようなテクニックをブートストラップするために使用される擬似ラベルの顕著なノイズが生じる。
論文 参考訳(メタデータ) (2024-07-09T06:35:17Z) - Shape Matters: Detecting Vertebral Fractures Using Differentiable
Point-Based Shape Decoding [51.38395069380457]
変性性脊椎疾患は高齢者に多い。
骨粗しょう性骨折やその他の変性変形性骨折のタイムリーな診断は、重度の腰痛や障害のリスクを軽減するための前向きな処置を促進する。
本研究では,脊椎動物に対する形状自動エンコーダの使用について検討する。
論文 参考訳(メタデータ) (2023-12-08T18:11:22Z) - Intelligent Breast Cancer Diagnosis with Heuristic-assisted
Trans-Res-U-Net and Multiscale DenseNet using Mammogram Images [0.0]
乳癌(BC)は、女性のがん関連死亡率に大きく寄与する。
悪性の腫瘤を正確に識別することは 依然として困難です
マンモグラフィ画像を用いたBCGスクリーニングのための新しい深層学習手法を提案する。
論文 参考訳(メタデータ) (2023-10-30T10:22:14Z) - Multi-Head Feature Pyramid Networks for Breast Mass Detection [48.24995569980701]
本稿では,MHFPN (Multi-head Feature pyramid Module) を提案する。
実験により、SOTA検出ベースラインと比較して、一般的に使用されるInbreastデータセットでは、我々の手法は6.58%(AP@50では6.58%、TPR@50では5.4%(TPR@50では5.4%)の改善が見られた。
論文 参考訳(メタデータ) (2023-02-22T03:02:52Z) - Mediastinal Lymph Node Detection and Segmentation Using Deep Learning [1.7188280334580195]
臨床ではCT(Computed tomography)とPET(positron emission tomography)が異常リンパ節(LN)を検出する
深層畳み込みニューラルネットワークは、しばしば医療写真にアイテムを分割する。
良質な深層学習手法であるUNetは、縦隔リンパ節の分節と検出のための戦略に基づいて、双線形および全一般化変異(TGV)を用いて修正された。
修正されたUNetはテクスチャの不連続を維持し、ノイズの多い領域を選択し、バックプロパゲーションを通じて適切なバランスポイントを検索し、画像の解像度を再現する。
論文 参考訳(メタデータ) (2022-11-24T02:55:20Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
乳腺腫瘍の分類と分別を同時に行うための,効率的で軽量な学習アーキテクチャを提案する。
腫瘍分類ネットワークにセグメンテーションタスクを組み込むことにより,腫瘍領域に着目したバックボーンネットワークで表現を学習する。
腫瘍分類の精度、感度、特異性はそれぞれ88.6%、94.1%、85.3%である。
論文 参考訳(メタデータ) (2022-01-13T05:24:40Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z) - Data Consistent CT Reconstruction from Insufficient Data with Learned
Prior Images [70.13735569016752]
偽陰性病変と偽陽性病変を呈示し,CT画像再構成における深層学習の堅牢性について検討した。
本稿では,圧縮センシングと深層学習の利点を組み合わせた画像品質向上のためのデータ一貫性再構築手法を提案する。
提案手法の有効性は,円錐ビームCTにおいて,トランキャットデータ,リミテッドアングルデータ,スパースビューデータで示される。
論文 参考訳(メタデータ) (2020-05-20T13:30:49Z) - Learning from Suspected Target: Bootstrapping Performance for Breast
Cancer Detection in Mammography [6.323318523772466]
対象領域の選択と訓練を行う新しいサンプリング手順とともに,新しいトップ可能性損失を導入する。
まず,提案手法をプライベートな高密度マンモグラフィーデータセット上で検証する。
以上の結果から,本手法は偽陽性率を大幅に低減し,質量型癌検出では0.25倍の特異性を示した。
論文 参考訳(メタデータ) (2020-03-01T09:04:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。