HINormer: Representation Learning On Heterogeneous Information Networks
with Graph Transformer
- URL: http://arxiv.org/abs/2302.11329v1
- Date: Wed, 22 Feb 2023 12:25:07 GMT
- Title: HINormer: Representation Learning On Heterogeneous Information Networks
with Graph Transformer
- Authors: Qiheng Mao, Zemin Liu, Chenghao Liu, Jianling Sun
- Abstract summary: Graph Transformers (GTs) have been proposed which work in the paradigm that allows message passing to a larger coverage even across the whole graph.
The investigation of GTs on heterogeneous information networks (HINs) is still under-exploited.
We propose a novel model named HINormer, which capitalizes on a larger-range aggregation mechanism for node representation learning.
- Score: 29.217820912610602
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent studies have highlighted the limitations of message-passing based
graph neural networks (GNNs), e.g., limited model expressiveness,
over-smoothing, over-squashing, etc. To alleviate these issues, Graph
Transformers (GTs) have been proposed which work in the paradigm that allows
message passing to a larger coverage even across the whole graph. Hinging on
the global range attention mechanism, GTs have shown a superpower for
representation learning on homogeneous graphs. However, the investigation of
GTs on heterogeneous information networks (HINs) is still under-exploited. In
particular, on account of the existence of heterogeneity, HINs show distinct
data characteristics and thus require different treatment. To bridge this gap,
in this paper we investigate the representation learning on HINs with Graph
Transformer, and propose a novel model named HINormer, which capitalizes on a
larger-range aggregation mechanism for node representation learning. In
particular, assisted by two major modules, i.e., a local structure encoder and
a heterogeneous relation encoder, HINormer can capture both the structural and
heterogeneous information of nodes on HINs for comprehensive node
representations. We conduct extensive experiments on four HIN benchmark
datasets, which demonstrate that our proposed model can outperform the
state-of-the-art.
Related papers
- Learning From Graph-Structured Data: Addressing Design Issues and Exploring Practical Applications in Graph Representation Learning [2.492884361833709]
We present an exhaustive review of the latest advancements in graph representation learning and Graph Neural Networks (GNNs)
GNNs, tailored to handle graph-structured data, excel in deriving insights and predictions from intricate relational information.
Our work delves into the capabilities of GNNs, examining their foundational designs and their application in addressing real-world challenges.
arXiv Detail & Related papers (2024-11-09T19:10:33Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
Graph neural networks (GNNs) demonstrate a robust capability for representation learning on graphs with complex structures.
A novel GNNs framework, dubbed Decoupled Graph Neural Networks (DGNN), is introduced to obtain a more comprehensive embedding representation of nodes.
Experimental results conducted on several graph benchmark datasets verify DGNN's superiority in node classification task.
arXiv Detail & Related papers (2024-01-28T06:43:13Z) - A Model-Agnostic Graph Neural Network for Integrating Local and Global Information [2.6164652182042505]
Graph Neural Networks (GNNs) have achieved promising performance in a variety of graph-focused tasks.
Existing GNNs suffer from two significant limitations: a lack of interpretability in their results due to their black-box nature, and an inability to learn representations of varying orders.
We propose a novel Model-agnostic Graph Neural Network (MaGNet) framework, which is able to effectively integrate information of various orders, extract knowledge from high-order neighbors, and provide meaningful and interpretable results by identifying influential compact graph structures.
arXiv Detail & Related papers (2023-09-23T19:07:03Z) - Seq-HGNN: Learning Sequential Node Representation on Heterogeneous Graph [57.2953563124339]
We propose a novel heterogeneous graph neural network with sequential node representation, namely Seq-HGNN.
We conduct extensive experiments on four widely used datasets from Heterogeneous Graph Benchmark (HGB) and Open Graph Benchmark (OGB)
arXiv Detail & Related papers (2023-05-18T07:27:18Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
We propose a simple yet efficient framework to make the homogeneous GNNs have adequate ability to handle heterogeneous graphs.
Specifically, we propose Relation Embedding based Graph Neural Networks (RE-GNNs), which employ only one parameter per relation to embed the importance of edge type relations and self-loop connections.
arXiv Detail & Related papers (2022-09-23T05:24:18Z) - Simple and Efficient Heterogeneous Graph Neural Network [55.56564522532328]
Heterogeneous graph neural networks (HGNNs) have powerful capability to embed rich structural and semantic information of a heterogeneous graph into node representations.
Existing HGNNs inherit many mechanisms from graph neural networks (GNNs) over homogeneous graphs, especially the attention mechanism and the multi-layer structure.
This paper conducts an in-depth and detailed study of these mechanisms and proposes Simple and Efficient Heterogeneous Graph Neural Network (SeHGNN)
arXiv Detail & Related papers (2022-07-06T10:01:46Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
Heterogeneous graph neural network (HGNN) is a very popular technique for the modeling and analysis of heterogeneous graphs.
We develop for the first time a novel and robust heterogeneous graph contrastive learning approach, namely HGCL, which introduces two views on respective guidance of node attributes and graph topologies.
In this new approach, we adopt distinct but most suitable attribute and topology fusion mechanisms in the two views, which are conducive to mining relevant information in attributes and topologies separately.
arXiv Detail & Related papers (2022-04-30T12:57:02Z) - Heterogeneous Graph Neural Network with Multi-view Representation
Learning [16.31723570596291]
We propose a Heterogeneous Graph Neural Network with Multi-View Representation Learning (MV-HetGNN) for heterogeneous graph embedding.
The proposed model consists of node feature transformation, view-specific ego graph encoding and auto multi-view fusion to thoroughly learn complex structural and semantic information for generating comprehensive node representations.
Extensive experiments on three real-world heterogeneous graph datasets show that the proposed MV-HetGNN model consistently outperforms all the state-of-the-art GNN baselines in various downstream tasks.
arXiv Detail & Related papers (2021-08-31T07:18:48Z) - Parameterized Hypercomplex Graph Neural Networks for Graph
Classification [1.1852406625172216]
We develop graph neural networks that leverage the properties of hypercomplex feature transformation.
In particular, in our proposed class of models, the multiplication rule specifying the algebra itself is inferred from the data during training.
We test our proposed hypercomplex GNN on several open graph benchmark datasets and show that our models reach state-of-the-art performance.
arXiv Detail & Related papers (2021-03-30T18:01:06Z) - Graph Information Bottleneck [77.21967740646784]
Graph Neural Networks (GNNs) provide an expressive way to fuse information from network structure and node features.
Inheriting from the general Information Bottleneck (IB), GIB aims to learn the minimal sufficient representation for a given task.
We show that our proposed models are more robust than state-of-the-art graph defense models.
arXiv Detail & Related papers (2020-10-24T07:13:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.