Heterogeneous Graph Neural Network with Multi-view Representation
Learning
- URL: http://arxiv.org/abs/2108.13650v1
- Date: Tue, 31 Aug 2021 07:18:48 GMT
- Title: Heterogeneous Graph Neural Network with Multi-view Representation
Learning
- Authors: Zezhi Shao, Yongjun Xu, Wei Wei, Fei Wang, Zhao Zhang, Feida Zhu
- Abstract summary: We propose a Heterogeneous Graph Neural Network with Multi-View Representation Learning (MV-HetGNN) for heterogeneous graph embedding.
The proposed model consists of node feature transformation, view-specific ego graph encoding and auto multi-view fusion to thoroughly learn complex structural and semantic information for generating comprehensive node representations.
Extensive experiments on three real-world heterogeneous graph datasets show that the proposed MV-HetGNN model consistently outperforms all the state-of-the-art GNN baselines in various downstream tasks.
- Score: 16.31723570596291
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph neural networks for heterogeneous graph embedding is to project nodes
into a low-dimensional space by exploring the heterogeneity and semantics of
the heterogeneous graph. However, on the one hand, most of existing
heterogeneous graph embedding methods either insufficiently model the local
structure under specific semantic, or neglect the heterogeneity when
aggregating information from it. On the other hand, representations from
multiple semantics are not comprehensively integrated to obtain versatile node
embeddings. To address the problem, we propose a Heterogeneous Graph Neural
Network with Multi-View Representation Learning (named MV-HetGNN) for
heterogeneous graph embedding by introducing the idea of multi-view
representation learning. The proposed model consists of node feature
transformation, view-specific ego graph encoding and auto multi-view fusion to
thoroughly learn complex structural and semantic information for generating
comprehensive node representations. Extensive experiments on three real-world
heterogeneous graph datasets show that the proposed MV-HetGNN model
consistently outperforms all the state-of-the-art GNN baselines in various
downstream tasks, e.g., node classification, node clustering, and link
prediction.
Related papers
- DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
Graph neural networks (GNNs) demonstrate a robust capability for representation learning on graphs with complex structures.
A novel GNNs framework, dubbed Decoupled Graph Neural Networks (DGNN), is introduced to obtain a more comprehensive embedding representation of nodes.
Experimental results conducted on several graph benchmark datasets verify DGNN's superiority in node classification task.
arXiv Detail & Related papers (2024-01-28T06:43:13Z) - Seq-HGNN: Learning Sequential Node Representation on Heterogeneous Graph [57.2953563124339]
We propose a novel heterogeneous graph neural network with sequential node representation, namely Seq-HGNN.
We conduct extensive experiments on four widely used datasets from Heterogeneous Graph Benchmark (HGB) and Open Graph Benchmark (OGB)
arXiv Detail & Related papers (2023-05-18T07:27:18Z) - HINormer: Representation Learning On Heterogeneous Information Networks
with Graph Transformer [29.217820912610602]
Graph Transformers (GTs) have been proposed which work in the paradigm that allows message passing to a larger coverage even across the whole graph.
The investigation of GTs on heterogeneous information networks (HINs) is still under-exploited.
We propose a novel model named HINormer, which capitalizes on a larger-range aggregation mechanism for node representation learning.
arXiv Detail & Related papers (2023-02-22T12:25:07Z) - Multi-view Graph Convolutional Networks with Differentiable Node
Selection [29.575611350389444]
We propose a framework dubbed Multi-view Graph Convolutional Network with Differentiable Node Selection (MGCN-DNS)
MGCN-DNS accepts multi-channel graph-structural data as inputs and aims to learn more robust graph fusion through a differentiable neural network.
The effectiveness of the proposed method is verified by rigorous comparisons with considerable state-of-the-art approaches.
arXiv Detail & Related papers (2022-12-09T21:48:36Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
We propose a simple yet efficient framework to make the homogeneous GNNs have adequate ability to handle heterogeneous graphs.
Specifically, we propose Relation Embedding based Graph Neural Networks (RE-GNNs), which employ only one parameter per relation to embed the importance of edge type relations and self-loop connections.
arXiv Detail & Related papers (2022-09-23T05:24:18Z) - SHGNN: Structure-Aware Heterogeneous Graph Neural Network [77.78459918119536]
This paper proposes a novel Structure-Aware Heterogeneous Graph Neural Network (SHGNN) to address the above limitations.
We first utilize a feature propagation module to capture the local structure information of intermediate nodes in the meta-path.
Next, we use a tree-attention aggregator to incorporate the graph structure information into the aggregation module on the meta-path.
Finally, we leverage a meta-path aggregator to fuse the information aggregated from different meta-paths.
arXiv Detail & Related papers (2021-12-12T14:18:18Z) - HMSG: Heterogeneous Graph Neural Network based on Metapath Subgraph
Learning [2.096172374930129]
We propose a new heterogeneous graph neural network model named HMSG.
We decompose the heterogeneous graph into multiple subgraphs.
Each subgraph associates specific semantic and structural information.
Through a type-specific attribute transformation, node attributes can also be transferred among different types of nodes.
arXiv Detail & Related papers (2021-09-07T05:02:59Z) - Reinforced Neighborhood Selection Guided Multi-Relational Graph Neural
Networks [68.9026534589483]
RioGNN is a novel Reinforced, recursive and flexible neighborhood selection guided multi-relational Graph Neural Network architecture.
RioGNN can learn more discriminative node embedding with enhanced explainability due to the recognition of individual importance of each relation.
arXiv Detail & Related papers (2021-04-16T04:30:06Z) - Learning the Implicit Semantic Representation on Graph-Structured Data [57.670106959061634]
Existing representation learning methods in graph convolutional networks are mainly designed by describing the neighborhood of each node as a perceptual whole.
We propose a Semantic Graph Convolutional Networks (SGCN) that explores the implicit semantics by learning latent semantic-paths in graphs.
arXiv Detail & Related papers (2021-01-16T16:18:43Z) - GAHNE: Graph-Aggregated Heterogeneous Network Embedding [32.44836376873812]
Heterogeneous network embedding aims to embed nodes into low-dimensional vectors which capture rich intrinsic information of heterogeneous networks.
Existing models either depend on manually designing meta-paths, ignore mutual effects between different semantics, or omit some aspects of information from global networks.
In GAHNE model, we develop several mechanisms that can aggregate semantic representations from different single-type sub-networks as well as fuse the global information into final embeddings.
arXiv Detail & Related papers (2020-12-23T07:11:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.