Magnification Invariant Medical Image Analysis: A Comparison of
Convolutional Networks, Vision Transformers, and Token Mixers
- URL: http://arxiv.org/abs/2302.11488v1
- Date: Wed, 22 Feb 2023 16:44:41 GMT
- Title: Magnification Invariant Medical Image Analysis: A Comparison of
Convolutional Networks, Vision Transformers, and Token Mixers
- Authors: Pranav Jeevan, Nikhil Cherian Kurian and Amit Sethi
- Abstract summary: Convolution Neural Networks (CNNs) are widely used in medical image analysis.
Their performance degrade when the magnification of testing images differ from the training images.
This study aims to evaluate the robustness of various deep learning architectures.
- Score: 2.3859625728972484
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Convolution Neural Networks (CNNs) are widely used in medical image analysis,
but their performance degrade when the magnification of testing images differ
from the training images. The inability of CNNs to generalize across
magnification scales can result in sub-optimal performance on external
datasets. This study aims to evaluate the robustness of various deep learning
architectures in the analysis of breast cancer histopathological images with
varying magnification scales at training and testing stages. Here we explore
and compare the performance of multiple deep learning architectures, including
CNN-based ResNet and MobileNet, self-attention-based Vision Transformers and
Swin Transformers, and token-mixing models, such as FNet, ConvMixer, MLP-Mixer,
and WaveMix. The experiments are conducted using the BreakHis dataset, which
contains breast cancer histopathological images at varying magnification
levels. We show that performance of WaveMix is invariant to the magnification
of training and testing data and can provide stable and good classification
accuracy. These evaluations are critical in identifying deep learning
architectures that can robustly handle changes in magnification scale, ensuring
that scale changes across anatomical structures do not disturb the inference
results.
Related papers
- Disease Classification and Impact of Pretrained Deep Convolution Neural Networks on Diverse Medical Imaging Datasets across Imaging Modalities [0.0]
This paper investigates the intricacies of using pretrained deep convolutional neural networks with transfer learning across diverse medical imaging datasets.
It shows that the use of pretrained models as fixed feature extractors yields poor performance irrespective of the datasets.
It is also found that deeper and more complex architectures did not necessarily result in the best performance.
arXiv Detail & Related papers (2024-08-30T04:51:19Z) - A Comparative Study of CNN, ResNet, and Vision Transformers for Multi-Classification of Chest Diseases [0.0]
Vision Transformers (ViT) are powerful tools due to their scalability and ability to process large amounts of data.
We fine-tuned two variants of ViT models, one pre-trained on ImageNet and another trained from scratch, using the NIH Chest X-ray dataset.
Our study evaluates the performance of these models in the multi-label classification of 14 distinct diseases.
arXiv Detail & Related papers (2024-05-31T23:56:42Z) - Boosting Medical Image Segmentation Performance with Adaptive Convolution Layer [6.887244952811574]
We propose an adaptive layer placed ahead of leading deep-learning models such as UCTransNet.
Our approach enhances the network's ability to handle diverse anatomical structures and subtle image details.
It consistently outperforms traditional CNNs with fixed kernel sizes with a similar number of parameters.
arXiv Detail & Related papers (2024-04-17T13:18:39Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
We propose a novel Affine-Consistent Transformer (AC-Former), which directly yields a sequence of nucleus positions.
We introduce an Adaptive Affine Transformer (AAT) module, which can automatically learn the key spatial transformations to warp original images for local network training.
Experimental results demonstrate that the proposed method significantly outperforms existing state-of-the-art algorithms on various benchmarks.
arXiv Detail & Related papers (2023-10-22T02:27:02Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - Optimizations of Autoencoders for Analysis and Classification of
Microscopic In Situ Hybridization Images [68.8204255655161]
We propose a deep-learning framework to detect and classify areas of microscopic images with similar levels of gene expression.
The data we analyze requires an unsupervised learning model for which we employ a type of Artificial Neural Network - Deep Learning Autoencoders.
arXiv Detail & Related papers (2023-04-19T13:45:28Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
The biggest challenge in the application of deep learning to the medical domain is the availability of training data.
Data augmentation is a typical methodology used in machine learning when confronted with a limited data set.
In this work, a StyleGAN2-ADA model of Generative Adversarial Networks is trained on the limited COVID-19 chest X-ray image set.
arXiv Detail & Related papers (2023-04-18T15:39:58Z) - Deep learning-based bias transfer for overcoming laboratory differences
of microscopic images [0.0]
We evaluate, compare, and improve existing generative model architectures to overcome domain shifts for immunofluorescence (IF) and Hematoxylin and Eosin (H&E) stained microscopy images.
Adapting the bias of the samples significantly improved the pixel-level segmentation for human kidney glomeruli and podocytes and improved the classification accuracy for human prostate biopsies by up to 14%.
arXiv Detail & Related papers (2021-05-25T09:02:30Z) - Exploring Intensity Invariance in Deep Neural Networks for Brain Image
Registration [0.0]
We investigate the effect of intensity distribution among input image pairs for deep learning-based image registration methods.
Deep learning models trained with structure similarity-based loss seems to perform better for both datasets.
arXiv Detail & Related papers (2020-09-21T17:49:03Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.