Disease Classification and Impact of Pretrained Deep Convolution Neural Networks on Diverse Medical Imaging Datasets across Imaging Modalities
- URL: http://arxiv.org/abs/2408.17011v2
- Date: Mon, 2 Sep 2024 06:31:48 GMT
- Title: Disease Classification and Impact of Pretrained Deep Convolution Neural Networks on Diverse Medical Imaging Datasets across Imaging Modalities
- Authors: Jutika Borah, Kumaresh Sarmah, Hidam Kumarjit Singh,
- Abstract summary: This paper investigates the intricacies of using pretrained deep convolutional neural networks with transfer learning across diverse medical imaging datasets.
It shows that the use of pretrained models as fixed feature extractors yields poor performance irrespective of the datasets.
It is also found that deeper and more complex architectures did not necessarily result in the best performance.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Imaging techniques such as Chest X-rays, whole slide images, and optical coherence tomography serve as the initial screening and detection for a wide variety of medical pulmonary and ophthalmic conditions respectively. This paper investigates the intricacies of using pretrained deep convolutional neural networks with transfer learning across diverse medical imaging datasets with varying modalities for binary and multiclass classification. We conducted a comprehensive performance analysis with ten network architectures and model families each with pretraining and random initialization. Our finding showed that the use of pretrained models as fixed feature extractors yields poor performance irrespective of the datasets. Contrary, histopathology microscopy whole slide images have better performance. It is also found that deeper and more complex architectures did not necessarily result in the best performance. This observation implies that the improvements in ImageNet are not parallel to the medical imaging tasks. Within a medical domain, the performance of the network architectures varies within model families with shifts in datasets. This indicates that the performance of models within a specific modality may not be conclusive for another modality within the same domain. This study provides a deeper understanding of the applications of deep learning techniques in medical imaging and highlights the impact of pretrained networks across different medical imaging datasets under five different experimental settings.
Related papers
- Do Vision Foundation Models Enhance Domain Generalization in Medical Image Segmentation? [10.20366295974822]
We introduce a novel decode head architecture, HQHSAM, which simply integrates elements from two state-of-the-art decoder heads, HSAM and HQSAM, to enhance segmentation performance.
Our experiments on multiple datasets, encompassing various anatomies and modalities, reveal that FMs, particularly with the HQHSAM decode head, improve domain generalization for medical image segmentation.
arXiv Detail & Related papers (2024-09-12T11:41:35Z) - Benchmarking Retinal Blood Vessel Segmentation Models for Cross-Dataset and Cross-Disease Generalization [5.237321836999284]
We train and evaluate five published models on the publicly available FIVES fundus image dataset.
We find that image quality is a key factor determining segmentation outcomes.
arXiv Detail & Related papers (2024-06-21T09:12:34Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
We introduce LVM-Med, the first family of deep networks trained on large-scale medical datasets.
We have collected approximately 1.3 million medical images from 55 publicly available datasets.
LVM-Med empirically outperforms a number of state-of-the-art supervised, self-supervised, and foundation models.
arXiv Detail & Related papers (2023-06-20T22:21:34Z) - Bridging Synthetic and Real Images: a Transferable and Multiple
Consistency aided Fundus Image Enhancement Framework [61.74188977009786]
We propose an end-to-end optimized teacher-student framework to simultaneously conduct image enhancement and domain adaptation.
We also propose a novel multi-stage multi-attention guided enhancement network (MAGE-Net) as the backbones of our teacher and student network.
arXiv Detail & Related papers (2023-02-23T06:16:15Z) - Revisiting Hidden Representations in Transfer Learning for Medical
Imaging [2.4545492329339815]
We compare ImageNet and RadImageNet on seven medical classification tasks.
Our results indicate that, contrary to intuition, ImageNet and RadImageNet may converge to distinct intermediate representations.
Our findings show that the similarity between networks before and after fine-tuning does not correlate with performance gains.
arXiv Detail & Related papers (2023-02-16T13:04:59Z) - Understanding the Tricks of Deep Learning in Medical Image Segmentation:
Challenges and Future Directions [66.40971096248946]
In this paper, we collect a series of MedISeg tricks for different model implementation phases.
We experimentally explore the effectiveness of these tricks on consistent baselines.
We also open-sourced a strong MedISeg repository, where each component has the advantage of plug-and-play.
arXiv Detail & Related papers (2022-09-21T12:30:05Z) - Generative Adversarial U-Net for Domain-free Medical Image Augmentation [49.72048151146307]
The shortage of annotated medical images is one of the biggest challenges in the field of medical image computing.
In this paper, we develop a novel generative method named generative adversarial U-Net.
Our newly designed model is domain-free and generalizable to various medical images.
arXiv Detail & Related papers (2021-01-12T23:02:26Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Exploring Intensity Invariance in Deep Neural Networks for Brain Image
Registration [0.0]
We investigate the effect of intensity distribution among input image pairs for deep learning-based image registration methods.
Deep learning models trained with structure similarity-based loss seems to perform better for both datasets.
arXiv Detail & Related papers (2020-09-21T17:49:03Z) - Improving Calibration and Out-of-Distribution Detection in Medical Image
Segmentation with Convolutional Neural Networks [8.219843232619551]
Convolutional Neural Networks (CNNs) have shown to be powerful medical image segmentation models.
We advocate for multi-task learning, i.e., training a single model on several different datasets.
We show that not only a single CNN learns to automatically recognize the context and accurately segment the organ of interest in each context, but also that such a joint model often has more accurate and better-calibrated predictions.
arXiv Detail & Related papers (2020-04-12T23:42:51Z) - Retinopathy of Prematurity Stage Diagnosis Using Object Segmentation and
Convolutional Neural Networks [68.96150598294072]
Retinopathy of Prematurity (ROP) is an eye disorder primarily affecting premature infants with lower weights.
It causes proliferation of vessels in the retina and could result in vision loss and, eventually, retinal detachment, leading to blindness.
In recent years, there has been a significant effort to automate the diagnosis using deep learning.
This paper builds upon the success of previous models and develops a novel architecture, which combines object segmentation and convolutional neural networks (CNN)
Our proposed system first trains an object segmentation model to identify the demarcation line at a pixel level and adds the resulting mask as an additional "color" channel in
arXiv Detail & Related papers (2020-04-03T14:07:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.