Boosting Medical Image Segmentation Performance with Adaptive Convolution Layer
- URL: http://arxiv.org/abs/2404.11361v1
- Date: Wed, 17 Apr 2024 13:18:39 GMT
- Title: Boosting Medical Image Segmentation Performance with Adaptive Convolution Layer
- Authors: Seyed M. R. Modaresi, Aomar Osmani, Mohammadreza Razzazi, Abdelghani Chibani,
- Abstract summary: We propose an adaptive layer placed ahead of leading deep-learning models such as UCTransNet.
Our approach enhances the network's ability to handle diverse anatomical structures and subtle image details.
It consistently outperforms traditional CNNs with fixed kernel sizes with a similar number of parameters.
- Score: 6.887244952811574
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Medical image segmentation plays a vital role in various clinical applications, enabling accurate delineation and analysis of anatomical structures or pathological regions. Traditional CNNs have achieved remarkable success in this field. However, they often rely on fixed kernel sizes, which can limit their performance and adaptability in medical images where features exhibit diverse scales and configurations due to variability in equipment, target sizes, and expert interpretations. In this paper, we propose an adaptive layer placed ahead of leading deep-learning models such as UCTransNet, which dynamically adjusts the kernel size based on the local context of the input image. By adaptively capturing and fusing features at multiple scales, our approach enhances the network's ability to handle diverse anatomical structures and subtle image details, even for recently performing architectures that internally implement intra-scale modules, such as UCTransnet. Extensive experiments are conducted on benchmark medical image datasets to evaluate the effectiveness of our proposal. It consistently outperforms traditional \glspl{CNN} with fixed kernel sizes with a similar number of parameters, achieving superior segmentation Accuracy, Dice, and IoU in popular datasets such as SegPC2021 and ISIC2018. The model and data are published in the open-source repository, ensuring transparency and reproducibility of our promising results.
Related papers
- TransResNet: Integrating the Strengths of ViTs and CNNs for High Resolution Medical Image Segmentation via Feature Grafting [6.987177704136503]
High-resolution images are preferable in medical imaging domain as they significantly improve the diagnostic capability of the underlying method.
Most of the existing deep learning-based techniques for medical image segmentation are optimized for input images having small spatial dimensions and perform poorly on high-resolution images.
We propose a parallel-in-branch architecture called TransResNet, which incorporates Transformer and CNN in a parallel manner to extract features from multi-resolution images independently.
arXiv Detail & Related papers (2024-10-01T18:22:34Z) - Disease Classification and Impact of Pretrained Deep Convolution Neural Networks on Diverse Medical Imaging Datasets across Imaging Modalities [0.0]
This paper investigates the intricacies of using pretrained deep convolutional neural networks with transfer learning across diverse medical imaging datasets.
It shows that the use of pretrained models as fixed feature extractors yields poor performance irrespective of the datasets.
It is also found that deeper and more complex architectures did not necessarily result in the best performance.
arXiv Detail & Related papers (2024-08-30T04:51:19Z) - Language Guided Domain Generalized Medical Image Segmentation [68.93124785575739]
Single source domain generalization holds promise for more reliable and consistent image segmentation across real-world clinical settings.
We propose an approach that explicitly leverages textual information by incorporating a contrastive learning mechanism guided by the text encoder features.
Our approach achieves favorable performance against existing methods in literature.
arXiv Detail & Related papers (2024-04-01T17:48:15Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - SeUNet-Trans: A Simple yet Effective UNet-Transformer Model for Medical
Image Segmentation [0.0]
We propose a simple yet effective UNet-Transformer (seUNet-Trans) model for medical image segmentation.
In our approach, the UNet model is designed as a feature extractor to generate multiple feature maps from the input images.
By leveraging the UNet architecture and the self-attention mechanism, our model not only retains the preservation of both local and global context information but also is capable of capturing long-range dependencies between input elements.
arXiv Detail & Related papers (2023-10-16T01:13:38Z) - Self-supervised Semantic Segmentation: Consistency over Transformation [3.485615723221064]
We propose a novel self-supervised algorithm, textbfS$3$-Net, which integrates a robust framework based on the proposed Inception Large Kernel Attention (I-LKA) modules.
We leverage deformable convolution as an integral component to effectively capture and delineate lesion deformations for superior object boundary definition.
Our experimental results on skin lesion and lung organ segmentation tasks show the superior performance of our method compared to the SOTA approaches.
arXiv Detail & Related papers (2023-08-31T21:28:46Z) - Automatic size and pose homogenization with spatial transformer network
to improve and accelerate pediatric segmentation [51.916106055115755]
We propose a new CNN architecture that is pose and scale invariant thanks to the use of Spatial Transformer Network (STN)
Our architecture is composed of three sequential modules that are estimated together during training.
We test the proposed method in kidney and renal tumor segmentation on abdominal pediatric CT scanners.
arXiv Detail & Related papers (2021-07-06T14:50:03Z) - Spatially Dependent U-Nets: Highly Accurate Architectures for Medical
Imaging Segmentation [10.77039660100327]
We introduce a novel deep neural network architecture that exploits the inherent spatial coherence of anatomical structures.
Our approach is well equipped to capture long-range spatial dependencies in the segmented pixel/voxel space.
Our method performs favourably to commonly used U-Net and U-Net++ architectures.
arXiv Detail & Related papers (2021-03-22T10:37:20Z) - Medical Transformer: Gated Axial-Attention for Medical Image
Segmentation [73.98974074534497]
We study the feasibility of using Transformer-based network architectures for medical image segmentation tasks.
We propose a Gated Axial-Attention model which extends the existing architectures by introducing an additional control mechanism in the self-attention module.
To train the model effectively on medical images, we propose a Local-Global training strategy (LoGo) which further improves the performance.
arXiv Detail & Related papers (2021-02-21T18:35:14Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.