Hybrid nonlocality via atom photon interactions with and without
impurities
- URL: http://arxiv.org/abs/2302.11513v1
- Date: Wed, 22 Feb 2023 17:30:27 GMT
- Title: Hybrid nonlocality via atom photon interactions with and without
impurities
- Authors: Pritam Halder, Ratul Banerjee, Saptarshi Roy, Aditi Sen De
- Abstract summary: We show how to obtain Bell statistics from hybrid states composed of finite- and infinite-dimensional systems.
We demonstrate the utility of our strategy in a realistic setting of cavity quantum electrodynamics.
We also examine the connection between Wigner negativity and hybrid nonlocality.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To obtain Bell statistics from hybrid states composed of finite- and
infinite-dimensional systems, we propose a hybrid measurement scheme, in which
the continuous mode is measured using the generalized pseudospin operators,
while the finite (two)-dimensional system is measured in the usual Pauli basis.
Maximizing the Bell expression with these measurements leads to the violations
of local realism which is referred to as hybrid nonlocality. We demonstrate the
utility of our strategy in a realistic setting of cavity quantum
electrodynamics, where an atom interacts with a single mode of an
electromagnetic field under the Jaynes-Cummings Hamiltonian. We dynamically
compute the quenched averaged value of hybrid nonlocality in imperfect
situations by incorporating disorder in the atom-cavity coupling strength. In
the disordered case, we introduce two kinds of measurement scenarios to
determine the Bell statistics -- in one situation, experimentalists can tune
the optimal settings according to the interaction strength while such
controlled power is absent in the other case. In contrast to the oscillatory
behavior observed in the ordered case, the quenched averaged violation
saturates to a finite value in some parameter regimes in the former case,
thereby highlighting an advantage of disordered systems. We also examine the
connection between Wigner negativity and hybrid nonlocality.
Related papers
- Natural disorder distributions from measurement [0.0]
We consider scenarios where the dynamics of a quantum system are partially determined by prior local measurements of some interacting environmental degrees of freedom.
We derive the properties of distributions for both quadrature and photon number measurements.
Given a notion of naturally occurring measurement, this suggests a new class of scenarios for the dynamics of quantum systems in particle physics and cosmology.
arXiv Detail & Related papers (2024-05-03T16:20:14Z) - Designing open quantum systems with known steady states: Davies generators and beyond [0.9903198600681908]
We provide a systematic framework for constructing generic models of nonequilibrium quantum dynamics with a target stationary (mixed) state.
We focus on Gibbs states of stabilizer Hamiltonians, identifying local Lindbladians compatible therewith by constraining the rates of dissipative and unitary processes.
Our methods also reveal new models of quantum dynamics: for example, we provide a "measurement-induced phase transition" where measurable two-point functions exhibit critical (power-law) scaling with distance at a critical ratio of the transverse field and rate of measurement and feedback.
arXiv Detail & Related papers (2024-04-22T19:21:34Z) - Generating magnon Bell states via parity measurement [0.0]
We propose a scheme to entangle two magnon modes based on parity measurement.
In particular, we consider a system that two yttrium-iron-garnet spheres are coupled to a $V$-type superconducting qutrit.
arXiv Detail & Related papers (2024-01-22T04:36:39Z) - Theory of free fermions dynamics under partial post-selected monitoring [49.1574468325115]
We derive a partial post-selected Schrdinger"o equation based on a microscopic description of continuous weak measurement.
We show that the passage to the monitored universality occurs abruptly at finite partial post-selection.
Our approach establishes a way to study MiPTs for arbitrary subsets of quantum trajectories.
arXiv Detail & Related papers (2023-12-21T16:53:42Z) - Dissipative preparation and stabilization of many-body quantum states in
a superconducting qutrit array [55.41644538483948]
We present and analyze a protocol for driven-dissipatively preparing and stabilizing a manifold of quantum manybody entangled states.
We perform theoretical modeling of this platform via pulse-level simulations based on physical features of real devices.
Our work shows the capacity of driven-dissipative superconducting cQED systems to host robust and self-corrected quantum manybody states.
arXiv Detail & Related papers (2023-03-21T18:02:47Z) - Unconditional Wigner-negative mechanical entanglement with
linear-and-quadratic optomechanical interactions [62.997667081978825]
We propose two schemes for generating Wigner-negative entangled states unconditionally in mechanical resonators.
We show analytically that both schemes stabilize a Wigner-negative entangled state that combines the entanglement of a two-mode squeezed vacuum with a cubic nonlinearity.
We then perform extensive numerical simulations to test the robustness of Wigner-negative entanglement attained by approximate CPE states stabilized in the presence of thermal decoherence.
arXiv Detail & Related papers (2023-02-07T19:00:08Z) - Noise-resilient Edge Modes on a Chain of Superconducting Qubits [103.93329374521808]
Inherent symmetry of a quantum system may protect its otherwise fragile states.
We implement the one-dimensional kicked Ising model which exhibits non-local Majorana edge modes (MEMs) with $mathbbZ$ parity symmetry.
MEMs are found to be resilient against certain symmetry-breaking noise owing to a prethermalization mechanism.
arXiv Detail & Related papers (2022-04-24T22:34:15Z) - Exact solutions of interacting dissipative systems via weak symmetries [77.34726150561087]
We analytically diagonalize the Liouvillian of a class Markovian dissipative systems with arbitrary strong interactions or nonlinearity.
This enables an exact description of the full dynamics and dissipative spectrum.
Our method is applicable to a variety of other systems, and could provide a powerful new tool for the study of complex driven-dissipative quantum systems.
arXiv Detail & Related papers (2021-09-27T17:45:42Z) - Generalized Discrete Truncated Wigner Approximation for Nonadiabtic
Quantum-Classical Dynamics [0.0]
We introduce a linearized semiclassical method, the generalized discrete truncated Wigner approximation (GDTWA)
GDTWA samples the electron degrees of freedom in a discrete phase space, and forbids an unphysical growth of electronic state populations.
Our results suggest that the method can be very adequate to treat challenging nonadiabatic dynamics problems in chemistry and related fields.
arXiv Detail & Related papers (2021-04-14T21:53:35Z) - Assessment of weak-coupling approximations on a driven two-level system
under dissipation [58.720142291102135]
We study a driven qubit through the numerically exact and non-perturbative method known as the Liouville-von equation with dissipation.
We propose a metric that may be used in experiments to map the regime of validity of the Lindblad equation in predicting the steady state of the driven qubit.
arXiv Detail & Related papers (2020-11-11T22:45:57Z) - Full-polaron master equation approach to dynamical steady states of a
driven two-level system beyond the weak system-environment coupling [1.7188280334580193]
We apply a full-polaron master equation and a weak-coupling non-Markovian master equation to describe the steady-state properties of a driven two-level system.
Our full-polaron equation approach does not require the special renormalization scheme employed in their weak-coupling theoretical method.
arXiv Detail & Related papers (2020-07-17T17:21:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.