Natural disorder distributions from measurement
- URL: http://arxiv.org/abs/2405.02214v1
- Date: Fri, 3 May 2024 16:20:14 GMT
- Title: Natural disorder distributions from measurement
- Authors: Šárka Blahnik, Sarah Shandera,
- Abstract summary: We consider scenarios where the dynamics of a quantum system are partially determined by prior local measurements of some interacting environmental degrees of freedom.
We derive the properties of distributions for both quadrature and photon number measurements.
Given a notion of naturally occurring measurement, this suggests a new class of scenarios for the dynamics of quantum systems in particle physics and cosmology.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider scenarios where the dynamics of a quantum system are partially determined by prior local measurements of some interacting environmental degrees of freedom. The resulting effective system dynamics are described by a disordered Hamiltonian, with spacetime-varying parameter values drawn from distributions that are generically neither flat nor Gaussian. This class of scenarios is a natural extension of those where a fully non-dynamical environmental degree of freedom determines a universal coupling constant for the system. Using a family of quasi-exactly solvable anharmonic oscillators, we consider environmental ground states of nonlinearly coupled degrees of freedom, unrestricted by a weak coupling expansion, which include strongly quantum non-Gaussian states. We derive the properties of distributions for both quadrature and photon number measurements. Measurement-induced disorder of this kind is likely realizable in laboratory quantum systems and, given a notion of naturally occurring measurement, suggests a new class of scenarios for the dynamics of quantum systems in particle physics and cosmology.
Related papers
- Decoherence without einselection [3.6585412615899324]
We show that einselection is actually artifacts resulting from the non-equilibrium dynamics of the apparatus.
We propose a new formalism of operator dressing, which we call the matrix integral (SMI)
arXiv Detail & Related papers (2024-07-06T13:34:03Z) - Exact asymptotics of long-range quantum correlations in a nonequilibrium steady state [0.0]
We analytically study the scaling of quantum correlation measures on a one-dimensional containing a noninteracting impurity.
We derive the exact form of the subleading logarithmic corrections to the extensive terms of correlation measures.
This echoes the case of equilibrium states, where such logarithmic terms may convey universal information about the physical system.
arXiv Detail & Related papers (2023-10-25T18:00:48Z) - Non-equilibrium quantum probing through linear response [41.94295877935867]
We study the system's response to unitary perturbations, as well as non-unitary perturbations, affecting the properties of the environment.
We show that linear response, combined with a quantum probing approach, can effectively provide valuable quantitative information about the perturbation and characteristics of the environment.
arXiv Detail & Related papers (2023-06-14T13:31:23Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Hybrid nonlocality via atom photon interactions with and without
impurities [0.0]
We show how to obtain Bell statistics from hybrid states composed of finite- and infinite-dimensional systems.
We demonstrate the utility of our strategy in a realistic setting of cavity quantum electrodynamics.
We also examine the connection between Wigner negativity and hybrid nonlocality.
arXiv Detail & Related papers (2023-02-22T17:30:27Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Full counting statistics as probe of measurement-induced transitions in
the quantum Ising chain [62.997667081978825]
We show that local projective measurements induce a modification of the out-of-equilibrium probability distribution function of the local magnetization.
In particular we describe how the probability distribution of the former shows different behaviour in the area-law and volume-law regimes.
arXiv Detail & Related papers (2022-12-19T12:34:37Z) - Neural-Network Quantum States for Periodic Systems in Continuous Space [66.03977113919439]
We introduce a family of neural quantum states for the simulation of strongly interacting systems in the presence of periodicity.
For one-dimensional systems we find very precise estimations of the ground-state energies and the radial distribution functions of the particles.
In two dimensions we obtain good estimations of the ground-state energies, comparable to results obtained from more conventional methods.
arXiv Detail & Related papers (2021-12-22T15:27:30Z) - Harmonic oscillator kicked by spin measurements: a Floquet-like system
without classical analogous [62.997667081978825]
The impulsive driving is provided by stroboscopic measurements on an ancillary degree of freedom.
The dynamics of this system is determined in closed analytical form.
We observe regimes with crystalline and quasicrystalline structures in phase space, resonances, and evidences of chaotic behavior.
arXiv Detail & Related papers (2021-11-23T20:25:57Z) - Quantum Dynamics under continuous projective measurements: non-Hermitian
description and the continuous space limit [0.0]
The time of arrival of a quantum system in a specified state is considered in the framework of the repeated measurement protocol.
For a particular choice of system-detector coupling, the Zeno effect is avoided and the system can be described effectively by a non-Hermitian effective Hamiltonian.
arXiv Detail & Related papers (2020-12-02T13:29:22Z) - Quantum Zeno effect appears in stages [64.41511459132334]
In the quantum Zeno effect, quantum measurements can block the coherent oscillation of a two level system by freezing its state to one of the measurement eigenstates.
We show that the onset of the Zeno regime is marked by a $textitcascade of transitions$ in the system dynamics as the measurement strength is increased.
arXiv Detail & Related papers (2020-03-23T18:17:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.