論文の概要: K-Diag: Knowledge-enhanced Disease Diagnosis in Radiographic Imaging
- arxiv url: http://arxiv.org/abs/2302.11557v1
- Date: Wed, 22 Feb 2023 18:53:57 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-23 14:09:05.508427
- Title: K-Diag: Knowledge-enhanced Disease Diagnosis in Radiographic Imaging
- Title(参考訳): k-diag : 画像診断における知識エンハンスド病診断
- Authors: Chaoyi Wu, Xiaoman Zhang, Yanfeng Wang, Ya Zhang, Weidi Xie
- Abstract要約: 医用領域知識の指導による視覚表現の訓練を可能にする知識強化フレームワークを提案する。
まず、専門家の知識を明示的に取り入れるために、医療知識グラフの神経表現を学ぶことを提案する。
第二に、ビジュアルエンコーダのトレーニング中に、知識エンコーダのパラメータを凍結させ、効率的な適応のためのプロンプトベクトルのセットを学ぶことを提案する。
- 参考スコア(独自算出の注目度): 40.52487429030841
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we consider the problem of disease diagnosis. Unlike the
conventional learning paradigm that treats labels independently, we propose a
knowledge-enhanced framework, that enables training visual representation with
the guidance of medical domain knowledge. In particular, we make the following
contributions: First, to explicitly incorporate experts' knowledge, we propose
to learn a neural representation for the medical knowledge graph via
contrastive learning, implicitly establishing relations between different
medical concepts. Second, while training the visual encoder, we keep the
parameters of the knowledge encoder frozen and propose to learn a set of prompt
vectors for efficient adaptation. Third, we adopt a Transformer-based
disease-query module for cross-model fusion, which naturally enables
explainable diagnosis results via cross attention. To validate the
effectiveness of our proposed framework, we conduct thorough experiments on
three x-ray imaging datasets across different anatomy structures, showing our
model is able to exploit the implicit relations between diseases/findings, thus
is beneficial to the commonly encountered problem in the medical domain,
namely, long-tailed and zero-shot recognition, which conventional methods
either struggle or completely fail to realize.
- Abstract(参考訳): 本稿では,疾患診断の問題点について考察する。
ラベルを個別に扱う従来の学習パラダイムとは異なり,医用領域知識の指導による視覚表現の訓練を可能にする知識強化フレームワークを提案する。
まず、専門家の知識を明示的に取り入れるために、対照的な学習を通して医学知識グラフの神経表現を学習し、異なる医学概念間の関係を暗黙的に確立することを提案する。
第2に,視覚エンコーダを訓練しながら,知識エンコーダのパラメータを凍結させ,効率的な適応のために一連のプロンプトベクトルを学ぶことを提案する。
第3に,トランスフォーマーを用いたクロスモデルフュージョンのための病問モジュールを導入し,クロスアテンションによる診断を自然に行えるようにした。
提案手法の有効性を検証するため, 異なる解剖構造にまたがる3つのX線画像データセットの徹底的な実験を行い, 本モデルが疾患・フィンディング間の暗黙的な関係を活用可能であることを示す。
関連論文リスト
- Aligning Human Knowledge with Visual Concepts Towards Explainable Medical Image Classification [8.382606243533942]
本稿では,説明可能な言語インフォームド基準に基づく診断に向けて,シンプルで効果的なフレームワークであるExplicdを紹介した。
事前訓練された視覚言語モデルを活用することで、Explicdはこれらの基準を知識アンカーとして埋め込み空間に注入する。
最終的な診断結果は、符号化された視覚概念とテキストの基準埋め込みとの類似度スコアに基づいて決定される。
論文 参考訳(メタデータ) (2024-06-08T23:23:28Z) - Knowledge-enhanced Visual-Language Pretraining for Computational Pathology [68.6831438330526]
本稿では,公共資源から収集した大規模画像テキストペアを利用した視覚的表現学習の課題について考察する。
ヒト32組織から病理診断を必要とする4,718の疾患に対して50,470個の情報属性からなる病理知識ツリーをキュレートする。
論文 参考訳(メタデータ) (2024-04-15T17:11:25Z) - MLIP: Enhancing Medical Visual Representation with Divergence Encoder
and Knowledge-guided Contrastive Learning [48.97640824497327]
本稿では、画像テキストのコントラスト学習を通じて、言語情報を視覚領域に統合するための案内信号として、ドメイン固有の医療知識を活用する新しいフレームワークを提案する。
我々のモデルには、設計した分散エンコーダによるグローバルコントラスト学習、局所トークン・知識・パッチアライメントコントラスト学習、知識誘導型カテゴリレベルのコントラスト学習、エキスパートナレッジによるコントラスト学習が含まれる。
特に、MLIPは、限られた注釈付きデータであっても最先端の手法を超越し、医療表現学習の進歩におけるマルチモーダル事前学習の可能性を強調している。
論文 参考訳(メタデータ) (2024-02-03T05:48:50Z) - MICA: Towards Explainable Skin Lesion Diagnosis via Multi-Level
Image-Concept Alignment [4.861768967055006]
本稿では, 医療画像と臨床関連概念を多層的に意味的に整合させるマルチモーダル説明型疾患診断フレームワークを提案する。
提案手法は, モデル解釈可能性を維持しながら, 概念検出と疾患診断に高い性能とラベル効率を実現する。
論文 参考訳(メタデータ) (2024-01-16T17:45:01Z) - Deep Reinforcement Learning Framework for Thoracic Diseases
Classification via Prior Knowledge Guidance [49.87607548975686]
関連疾患に対するラベル付きデータの不足は、正確な診断にとって大きな課題となる。
本稿では,診断エージェントの学習を指導するための事前知識を導入する,新しい深層強化学習フレームワークを提案する。
提案手法の性能はNIHX-ray 14とCheXpertデータセットを用いて実証した。
論文 参考訳(メタデータ) (2023-06-02T01:46:31Z) - Deep grading for MRI-based differential diagnosis of Alzheimer's disease
and Frontotemporal dementia [0.0]
アルツハイマー病と前頭側頭性認知症は神経変性性認知症の一般的な形態である。
現在の構造イメージングは、主に疾患の検出に焦点をあてるが、その鑑別診断にはほとんど焦点を当てない。
本稿では,疾患検出と鑑別診断の両問題に対するディープラーニングに基づくアプローチを提案する。
論文 参考訳(メタデータ) (2022-11-25T13:25:18Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
我々は,X線に基づく疾患分類のための新しい確率的推論フレームワークである反復的知識蒸留(VKD)を提案する。
提案手法の有効性を,X線画像とEHRを用いた3つの公開ベンチマークデータセットに示す。
論文 参考訳(メタデータ) (2021-03-19T14:13:56Z) - Cross Chest Graph for Disease Diagnosis with Structural Relational
Reasoning [2.7148274921314615]
X線画像のコンピュータ診断において位置病変は重要である。
一般に弱教師付き手法はX線像の特性を考慮できなかった。
自動病変検出の性能を向上させるCross-chest Graph (CCG)を提案する。
論文 参考訳(メタデータ) (2021-01-22T08:24:04Z) - Dynamic Graph Correlation Learning for Disease Diagnosis with Incomplete
Labels [66.57101219176275]
胸部X線画像上の疾患診断は,多ラベル分類の課題である。
本稿では,異なる疾患間の相互依存を調査する新たな視点を提示する病的診断グラフ畳み込みネットワーク(DD-GCN)を提案する。
本手法は,相関学習のための動的隣接行列を用いた特徴写像上のグラフを初めて構築する手法である。
論文 参考訳(メタデータ) (2020-02-26T17:10:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。