論文の概要: Deep grading for MRI-based differential diagnosis of Alzheimer's disease
and Frontotemporal dementia
- arxiv url: http://arxiv.org/abs/2211.14096v2
- Date: Mon, 11 Sep 2023 16:44:52 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-12 22:51:22.413231
- Title: Deep grading for MRI-based differential diagnosis of Alzheimer's disease
and Frontotemporal dementia
- Title(参考訳): MRIによるアルツハイマー病・前頭側頭型認知症の鑑別診断
- Authors: Huy-Dung Nguyen, Micha\"el Cl\'ement, Vincent Planche, Boris
Mansencal, Pierrick Coup\'e
- Abstract要約: アルツハイマー病と前頭側頭性認知症は神経変性性認知症の一般的な形態である。
現在の構造イメージングは、主に疾患の検出に焦点をあてるが、その鑑別診断にはほとんど焦点を当てない。
本稿では,疾患検出と鑑別診断の両問題に対するディープラーニングに基づくアプローチを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Alzheimer's disease and Frontotemporal dementia are common forms of
neurodegenerative dementia. Behavioral alterations and cognitive impairments
are found in the clinical courses of both diseases and their differential
diagnosis is sometimes difficult for physicians. Therefore, an accurate tool
dedicated to this diagnostic challenge can be valuable in clinical practice.
However, current structural imaging methods mainly focus on the detection of
each disease but rarely on their differential diagnosis. In this paper, we
propose a deep learning based approach for both problems of disease detection
and differential diagnosis. We suggest utilizing two types of biomarkers for
this application: structure grading and structure atrophy. First, we propose to
train a large ensemble of 3D U-Nets to locally determine the anatomical
patterns of healthy people, patients with Alzheimer's disease and patients with
Frontotemporal dementia using structural MRI as input. The output of the
ensemble is a 2-channel disease's coordinate map able to be transformed into a
3D grading map which is easy to interpret for clinicians. This 2-channel map is
coupled with a multi-layer perceptron classifier for different classification
tasks. Second, we propose to combine our deep learning framework with a
traditional machine learning strategy based on volume to improve the model
discriminative capacity and robustness. After both cross-validation and
external validation, our experiments based on 3319 MRI demonstrated competitive
results of our method compared to the state-of-the-art methods for both disease
detection and differential diagnosis.
- Abstract(参考訳): アルツハイマー病と前頭側頭性認知症は神経変性性認知症の一般的な形態である。
行動変化と認知障害は両疾患の臨床経過で見られ、その鑑別診断は医師にとって困難である。
したがって、この診断課題に特化した正確なツールが臨床実践に有用である。
しかし,現在の構造的イメージング法は主に各疾患の検出に焦点が当てられているが,その鑑別診断はまれである。
本稿では,疾患検出と鑑別診断の両面において,深層学習に基づくアプローチを提案する。
本応用には, 構造グレーディングと構造萎縮の2種類のバイオマーカーの利用を提案する。
まず,健常人,アルツハイマー病患者,前頭側頭型認知症患者の解剖学的パターンを,構造MRIを入力として局所的に判定する3D U-Netの大規模なアンサンブルをトレーニングすることを提案する。
アンサンブルの出力は2チャンネルの病気の座標マップであり、臨床医にとって容易に解釈できる3次元階調マップに変換できる。
この2チャンネルマップは、異なる分類タスクのための多層パーセプトロン分類器と結合される。
第2に,ディープラーニングフレームワークとボリュームに基づく従来の機械学習戦略を組み合わせることで,モデルの識別能力と堅牢性を向上させることを提案する。
クロスバリデーション法と外部バリデーション法の両方を併用し,3319 MRIを用いた実験により,診断法と鑑別診断法を比較検討した。
関連論文リスト
- UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
我々はUniBrainと呼ばれるユニバーサル脳MRI診断のための階層的知識強化事前訓練フレームワークを提案する。
具体的には、UniBrainは、定期的な診断から24,770のイメージレポートペアの大規模なデータセットを活用する。
論文 参考訳(メタデータ) (2023-09-13T09:22:49Z) - Expert Uncertainty and Severity Aware Chest X-Ray Classification by
Multi-Relationship Graph Learning [48.29204631769816]
我々はCXRレポートから病気ラベルを再抽出し,重症度と分類の不確実性を考慮し,より現実的になるようにした。
以上の結果から, 疾患の重症度と不確実性を考慮したモデルが, 従来の最先端手法よりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2023-09-06T19:19:41Z) - 3D Transformer based on deformable patch location for differential
diagnosis between Alzheimer's disease and Frontotemporal dementia [0.0]
アルツハイマー病と前頭側頭葉認知症は重度の臨床症状を呈する神経変性疾患の一般的なタイプである。
変形可能なパッチ位置モジュールを用いた新規な3次元トランスフォーマーアーキテクチャーを提案し,アルツハイマー病と前頭側頭葉認知症の鑑別診断を改善した。
論文 参考訳(メタデータ) (2023-09-06T17:42:18Z) - Interpretable differential diagnosis for Alzheimer's disease and
Frontotemporal dementia [0.0]
アルツハイマー病と前頭側頭性認知症は2つの主要な認知症である。
これら2種類の認知症の鑑別診断は、臨床症状の類似パターンにより、疾患の初期段階では困難である。
近年の医用画像の深層学習は,様々な分類課題において高い性能を示した。
論文 参考訳(メタデータ) (2022-06-15T09:44:30Z) - Automatic Classification of Neuromuscular Diseases in Children Using
Photoacoustic Imaging [77.32032399775152]
神経筋疾患(NMD)は、医療システムと社会の両方に重大な負担をもたらす。
激しい進行性筋力低下、筋変性、収縮、変形、進行性障害を引き起こす。
論文 参考訳(メタデータ) (2022-01-27T16:37:19Z) - SpineOne: A One-Stage Detection Framework for Degenerative Discs and
Vertebrae [54.751251046196494]
SpineOneと呼ばれる一段階検出フレームワークを提案し、MRIスライスから変性椎骨と椎骨を同時に局在化・分類する。
1)キーポイントの局所化と分類を促進するためのキーポイント・ヒートマップの新しい設計、2)ディスクと脊椎の表現をよりよく区別するためのアテンション・モジュールの使用、3)後期訓練段階における複数の学習目標を関連付けるための新しい勾配誘導客観的アソシエーション機構。
論文 参考訳(メタデータ) (2021-10-28T12:59:06Z) - Differential Diagnosis of Frontotemporal Dementia and Alzheimer's
Disease using Generative Adversarial Network [0.0]
前頭側頭性認知症とアルツハイマー病は2種類の認知症であり、互いに誤診しやすい。
2種類の認知症を区別することは、疾患特異的な介入と治療を決定するのに不可欠である。
医用画像処理分野におけるディープラーニングベースのアプローチの最近の発展は、多くのバイナリ分類タスクにおいて、最高のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2021-09-12T22:40:50Z) - An explainable two-dimensional single model deep learning approach for
Alzheimer's disease diagnosis and brain atrophy localization [3.9281410693767036]
本稿では、アルツハイマー病(AD)の自動診断と、sMRIデータから、この疾患に関連する重要な脳領域の局所化について、エンドツーエンドのディープラーニングアプローチを提案する。
提案手法は,AD対認知正常(CN)とプログレッシブMCI(pMCI)と安定MCI(sMCI)の2つの分類タスクに対して,パブリックアクセス可能な2つのデータセットで評価されている。
実験結果から,本手法はマルチモデルや3次元CNN手法など,最先端の手法よりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2021-07-28T07:19:00Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
臨床診断は、臨床ノートに基づいて患者に診断符号を割り当てることを目的としており、臨床意思決定において重要な役割を担っている。
本稿では,臨床自動診断のための継承誘導階層と共起グラフの伝播を組み合わせた新しい枠組みを提案する。
論文 参考訳(メタデータ) (2021-01-27T13:16:51Z) - A Benchmark for Studying Diabetic Retinopathy: Segmentation, Grading,
and Transferability [76.64661091980531]
糖尿病患者は糖尿病網膜症(DR)を発症するリスクがある
コンピュータ支援型DR診断は、DRの早期検出と重度評価のための有望なツールである。
このデータセットは、ピクセルレベルのDR関連病変アノテーションを持つ1,842枚の画像と、6人の眼科医によって評価された画像レベルのラベルを持つ1,000枚の画像を有する。
論文 参考訳(メタデータ) (2020-08-22T07:48:04Z) - An Explainable 3D Residual Self-Attention Deep Neural Network FOR Joint
Atrophy Localization and Alzheimer's Disease Diagnosis using Structural MRI [22.34325971680329]
我々は,3D Residual Attention Deep Neural Network(3D ResAttNet)を導入し,SMRIスキャンによるエンドツーエンド学習によるアルツハイマー病早期診断のためのコンピュータ支援手法を提案する。
実験結果から,提案手法は精度と一般化性の観点から,最先端モデルに対して競争上の優位性があることが示唆された。
論文 参考訳(メタデータ) (2020-08-10T11:08:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。