Structural phase transition and its critical dynamics from holography
- URL: http://arxiv.org/abs/2302.11597v1
- Date: Wed, 22 Feb 2023 19:00:17 GMT
- Title: Structural phase transition and its critical dynamics from holography
- Authors: Chuan-Yin Xia, Hua-Bi Zeng, Chiang-Mei Chen, Adolfo del Campo
- Abstract summary: We introduce a gravitational lattice theory defined in an AdS$_3$ black hole background that provides a holographic dual description of the linear-to-zigzag structural phase transition.
The transition from the high-symmetry linear phase to the broken-symmetry doubly-degenerate phase can be driven by quenching the coupling between adjacent sites through the critical point.
An analysis of the equilibrium correlation length and relaxation time reveals mean-field critical exponents.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a gravitational lattice theory defined in an AdS$_3$ black hole
background that provides a holographic dual description of the linear-to-zigzag
structural phase transition, characterized by the spontaneous breaking of
parity symmetry observed in, e.g., confined Coulomb crystals. The transition
from the high-symmetry linear phase to the broken-symmetry doubly-degenerate
zigzag phase can be driven by quenching the coupling between adjacent sites
through the critical point. An analysis of the equilibrium correlation length
and relaxation time reveals mean-field critical exponents. We explore the
nonequilibrium phase transition dynamics leading to kink formation. The kink
density obeys universal scaling laws in the limit of slow quenches, described
by the Kibble-Zurek mechanism (KZM), and at fast quenches, characterized by a
universal breakdown of the KZM.
Related papers
- Probing quantum floating phases in Rydberg atom arrays [61.242961328078245]
We experimentally observe the emergence of the quantum floating phase in 92 neutral-atom qubits.
The site-resolved measurement reveals the formation of domain walls within the commensurate ordered phase.
As the experimental system sizes increase, we show that the wave vectors approach a continuum of values incommensurate with the lattice.
arXiv Detail & Related papers (2024-01-16T03:26:36Z) - Bulk-Measurement-Induced Boundary Phase Transition in Toric Code and
Gauge-Higgs Model [0.0]
Boundary phase transition in toric code under cylinder geometry via bulk projective measurement is reported.
As the frequency of local measurement for bulk qubits is increased, spin-glass type long-range order on the boundaries emerges indicating spontaneous-symmetry breaking ( SSB)
We numerically elucidate the properties of this phase transition in detail, especially its criticality, and give a physical picture using non-local gauge-invariant symmetry operators.
arXiv Detail & Related papers (2023-11-28T10:04:17Z) - Softening of Majorana edge states by long-range couplings [77.34726150561087]
Long-range couplings in the Kitaev chain is shown to modify the universal scaling of topological states close to the critical point.
We prove that the Majorana states become increasingly delocalised at a universal rate which is only determined by the interaction range.
arXiv Detail & Related papers (2023-01-29T19:00:08Z) - The Sub-Exponential Critical Slowing Down at Floquet Time Crystal Phase
Transition [4.353446104859767]
We study critical dynamics near the Floquet time crystal phase transition.
Its critical behavior is described by introducing a space-time coarse grained correlation function.
We show the relaxation time has a universal sub-exponential scaling near the critical point.
arXiv Detail & Related papers (2023-01-17T13:28:32Z) - Anomalous criticality with bounded fluctuations and long-range
frustration induced by broken time-reversal symmetry [0.0]
We consider a one-dimensional Dicke lattice with complex photon hopping amplitudes.
We investigate the influence of time-reversal symmetry breaking due to synthetic magnetic fields.
arXiv Detail & Related papers (2022-08-03T18:00:04Z) - Locality of Spontaneous Symmetry Breaking and Universal Spacing
Distribution of Topological Defects Formed Across a Phase Transition [62.997667081978825]
A continuous phase transition results in the formation of topological defects with a density predicted by the Kibble-Zurek mechanism (KZM)
We characterize the spatial distribution of point-like topological defects in the resulting nonequilibrium state and model it using a Poisson point process in arbitrary spatial dimension with KZM density.
arXiv Detail & Related papers (2022-02-23T19:00:06Z) - Phase diagram of Rydberg-dressed atoms on two-leg square ladders:
Coupling supersymmetric conformal field theories on the lattice [52.77024349608834]
We investigate the phase diagram of hard-core bosons in two-leg ladders in the presence of soft-shoulder potentials.
We show how the competition between local and non-local terms gives rise to a phase diagram with liquid phases with dominant cluster, spin, and density-wave quasi-long-range ordering.
arXiv Detail & Related papers (2021-12-20T09:46:08Z) - Topological transitions with continuously monitored free fermions [68.8204255655161]
We show the presence of a topological phase transition that is of a different universality class than that observed in stroboscopic projective circuits.
We find that this entanglement transition is well identified by a combination of the bipartite entanglement entropy and the topological entanglement entropy.
arXiv Detail & Related papers (2021-12-17T22:01:54Z) - Field theory of charge sharpening in symmetric monitored quantum
circuits [0.2936007114555107]
Monitored quantum circuits (MRCs) exhibit a measurement-induced phase transition between area-law and volume-law entanglement scaling.
MRCs with a conserved charge additionally exhibit two distinct volume-law entangled phases that cannot be characterized by equilibrium notions of symmetry-breaking or topological order.
We numerically corroborate these scaling predictions also hold for discrete-time projective-measurement circuit models using large-scale matrix-product state simulations.
arXiv Detail & Related papers (2021-11-17T19:00:28Z) - Quantum correlations, entanglement spectrum and coherence of
two-particle reduced density matrix in the Extended Hubbard Model [62.997667081978825]
We study the ground state properties of the one-dimensional extended Hubbard model at half-filling.
In particular, in the superconducting region, we obtain that the entanglement spectrum signals a transition between a dominant singlet (SS) to triplet (TS) pairing ordering in the system.
arXiv Detail & Related papers (2021-10-29T21:02:24Z) - Scaling behavior in a multicritical one-dimensional topological
insulator [0.0]
We study a topological quantum phase transition with a second-order nonanalyticity of the ground-state energy.
We find that the critical exponents and scaling law defined with respect to the spectral gap remain the same regardless of the order of the transition.
arXiv Detail & Related papers (2020-08-18T21:05:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.