Field theory of charge sharpening in symmetric monitored quantum
circuits
- URL: http://arxiv.org/abs/2111.09336v1
- Date: Wed, 17 Nov 2021 19:00:28 GMT
- Title: Field theory of charge sharpening in symmetric monitored quantum
circuits
- Authors: Fergus Barratt, Utkarsh Agrawal, Sarang Gopalakrishnan, David A. Huse,
Romain Vasseur, Andrew C. Potter
- Abstract summary: Monitored quantum circuits (MRCs) exhibit a measurement-induced phase transition between area-law and volume-law entanglement scaling.
MRCs with a conserved charge additionally exhibit two distinct volume-law entangled phases that cannot be characterized by equilibrium notions of symmetry-breaking or topological order.
We numerically corroborate these scaling predictions also hold for discrete-time projective-measurement circuit models using large-scale matrix-product state simulations.
- Score: 0.2936007114555107
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Monitored quantum circuits (MRCs) exhibit a measurement-induced phase
transition between area-law and volume-law entanglement scaling. MRCs with a
conserved charge additionally exhibit two distinct volume-law entangled phases
that cannot be characterized by equilibrium notions of symmetry-breaking or
topological order, but rather by the non-equilibrium dynamics and steady-state
distribution of charge fluctuations. These include a charge-fuzzy phase in
which charge information is rapidly scrambled leading to slowly decaying
spatial fluctuations of charge in the steady state, and a charge-sharp phase in
which measurements collapse quantum fluctuations of charge without destroying
the volume-law entanglement of neutral degrees of freedom. By taking a
continuous-time, weak-measurement limit, we construct a controlled replica
field theory description of these phases and their intervening
charge-sharpening transition in one spatial dimension. We find that the charge
fuzzy phase is a critical phase with continuously evolving critical exponents
that terminates in a modified Kosterlitz-Thouless transition to the short-range
correlated charge-sharp phase. We numerically corroborate these scaling
predictions also hold for discrete-time projective-measurement circuit models
using large-scale matrix-product state simulations, and discuss generalizations
to higher dimensions.
Related papers
- Probing quantum floating phases in Rydberg atom arrays [61.242961328078245]
We experimentally observe the emergence of the quantum floating phase in 92 neutral-atom qubits.
The site-resolved measurement reveals the formation of domain walls within the commensurate ordered phase.
As the experimental system sizes increase, we show that the wave vectors approach a continuum of values incommensurate with the lattice.
arXiv Detail & Related papers (2024-01-16T03:26:36Z) - Spin fluctuations in the dissipative phase transitions of the quantum
Rabi model [0.998109397893173]
We investigate the dissipative phase transitions of the anisotropic quantum Rabi model with cavity decay.
Our findings indicate a general tendency of forming extreme non-equilibrium states in the single-spin system.
arXiv Detail & Related papers (2023-12-11T13:35:05Z) - Probing non-equilibrium dissipative phase transitions with trapped-ion
quantum simulators [0.5356944479760104]
Open quantum many-body systems with controllable dissipation can exhibit novel features in their dynamics and steady states.
We show that strong signatures of this dissipative phase transition and its non-equilibrium properties can be observed with a small system size.
Dissipation engineered in this way may allow the simulation of more general types of driven-dissipative systems.
arXiv Detail & Related papers (2023-11-10T17:31:00Z) - Quantifying measurement-induced quantum-to-classical crossover using an
open-system entanglement measure [49.1574468325115]
We study the entanglement of a single particle under continuous measurements.
We find that the entanglement at intermediate time scales shows the same qualitative behavior as a function of the measurement strength.
arXiv Detail & Related papers (2023-04-06T09:45:11Z) - Charge fluctuation and charge-resolved entanglement in monitored quantum
circuit with $U(1)$ symmetry [0.0]
We study a (1+1)-dimensional quantum circuit consisting of Haar-random unitary gates and projective measurements.
We find a phase transition between two phases characterized by bipartite charge fluctuation growing with the subsystem size or staying constant.
arXiv Detail & Related papers (2022-10-28T09:25:02Z) - Reminiscence of classical chaos in driven transmons [117.851325578242]
We show that even off-resonant drives can cause strong modifications to the structure of the transmon spectrum rendering a large part of it chaotic.
Results lead to a photon number threshold characterizing the appearance of chaos-induced quantum demolition effects.
arXiv Detail & Related papers (2022-07-19T16:04:46Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - Out-of-time-order correlator in the quantum Rabi model [62.997667081978825]
We show that out-of-time-order correlator derived from the Loschmidt echo signal quickly saturates in the normal phase.
We show that the effective time-averaged dimension of the quantum Rabi system can be large compared to the spin system size.
arXiv Detail & Related papers (2022-01-17T10:56:57Z) - Nonequilibrium phase transition in a driven-dissipative quantum
antiferromagnet [0.0]
This paper provides a numerical study of dynamical phases and the transitions between them in the nonequilibrium steady state of the prototypical two-dimensional Heisenberg antiferromagnet with drive and dissipation.
A finite-size analysis reveals static and dynamical critical scaling at the transition, with a discontinuous slope of the magnon number versus driving field strength and critical slowing down at the transition point.
arXiv Detail & Related papers (2021-07-08T13:35:00Z) - Dynamical Topological Quantum Phase Transitions at Criticality [0.0]
We contribute to expanding the systematic understanding of the interrelation between the equilibrium quantum phase transition and the dynamical quantum phase transition (DQPT)
Specifically, we find that dynamical quantum phase transition relies on the existence of massless it propagating quasiparticles as signaled by their impact on the Loschmidt overlap.
The underlying two dimensional model reveals gapless modes, which do not couple to the dynamical quantum phase transitions, while relevant massless quasiparticles present periodic nonanalytic signatures on the Loschmidt amplitude.
arXiv Detail & Related papers (2021-04-09T13:38:39Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.