論文の概要: A Deep Neural Network Based Approach to Building Budget-Constrained
Models for Big Data Analysis
- arxiv url: http://arxiv.org/abs/2302.11707v1
- Date: Thu, 23 Feb 2023 00:00:32 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-24 16:48:53.800419
- Title: A Deep Neural Network Based Approach to Building Budget-Constrained
Models for Big Data Analysis
- Title(参考訳): 深層ニューラルネットワークによるビッグデータ解析のための予算制約モデルの構築
- Authors: Rui Ming, Haiping Xu, Shannon E. Gibbs, Donghui Yan, Ming Shao
- Abstract要約: 我々は,Deep Neural Networks (DNN) を用いたビッグデータ解析において,重要でない特徴を排除するアプローチを導入する。
弱いリンクと弱いニューロンを特定し、与えられた予算内にモデルコストをもたらすためにいくつかの入力特徴を取り除きます。
- 参考スコア(独自算出の注目度): 11.562071835482223
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning approaches require collection of data on many different input
features or variables for accurate model training and prediction. Since data
collection on input features could be costly, it is crucial to reduce the cost
by selecting a subset of features and developing a budget-constrained model
(BCM). In this paper, we introduce an approach to eliminating less important
features for big data analysis using Deep Neural Networks (DNNs). Once a DNN
model has been developed, we identify the weak links and weak neurons, and
remove some input features to bring the model cost within a given budget. The
experimental results show our approach is feasible and supports user selection
of a suitable BCM within a given budget.
- Abstract(参考訳): ディープラーニングアプローチでは、正確なモデルトレーニングと予測のために、さまざまな入力機能や変数に関するデータの収集が必要である。
入力機能に関するデータ収集はコストがかかるため、機能のサブセットを選択して予算制約モデル(bcm)を開発することでコストを削減することが不可欠である。
本稿では,深層ニューラルネットワーク(dnn)を用いたビッグデータ解析における重要でない特徴の排除手法を提案する。
DNNモデルが開発されると、弱いリンクと弱いニューロンを特定し、与えられた予算内にモデルコストをもたらすためにいくつかの入力特徴を取り除く。
実験の結果,提案手法は有効であり,特定の予算内で適切なBCMのユーザ選択を支援する。
関連論文リスト
- Compute-Constrained Data Selection [77.06528009072967]
コスト対応ユーティリティ関数を用いてデータ選択の問題を定式化し、その問題をトレーニングのための初期選択コストのトレーディングとしてモデル化する。
複数のタスク、微調整トークンのスケーリングによる計算予算、モデルサイズ、データ選択計算など、包括的な実験を網羅的に実施しています。
論文 参考訳(メタデータ) (2024-10-21T17:11:21Z) - Transfer Learning on Multi-Dimensional Data: A Novel Approach to Neural Network-Based Surrogate Modeling [0.0]
畳み込みニューラルネットワーク(CNN)はそのようなサロゲートモデルの基礎として人気を集めている。
本稿では,$d$次元問題と$d-1$次元近似の両方に対する数値解の混合によるCNN代理モデルのトレーニングを提案する。
転送学習を用いて,2種類のデータに対して,高密度な完全畳み込みエンコーダ・デコーダCNNを学習する多相フローテスト問題に対するアプローチを実証する。
論文 参考訳(メタデータ) (2024-10-16T05:07:48Z) - How Much Data are Enough? Investigating Dataset Requirements for Patch-Based Brain MRI Segmentation Tasks [74.21484375019334]
ディープニューラルネットワークを確実にトレーニングするには、大規模なデータセットへのアクセスが必要である。
モデル開発に関連する時間的・経済的コストを緩和するためには,満足度の高いモデルをトレーニングするために必要なデータの量を明確に理解することが重要である。
本稿では,パッチベースのセグメンテーションネットワークのトレーニングに必要なアノテートデータの量を推定するための戦略的枠組みを提案する。
論文 参考訳(メタデータ) (2024-04-04T13:55:06Z) - Visual Prompting Upgrades Neural Network Sparsification: A Data-Model Perspective [64.04617968947697]
より優れた重量空間を実現するために、新しいデータモデル共設計視点を導入する。
具体的には、提案したVPNフレームワークでニューラルネットワークのスパーシフィケーションをアップグレードするために、カスタマイズされたVisual Promptが実装されている。
論文 参考訳(メタデータ) (2023-12-03T13:50:24Z) - A Tale of Two Cities: Data and Configuration Variances in Robust Deep
Learning [27.498927971861068]
ディープニューラルネットワーク(DNN)は、画像認識、サプライチェーン、診断、自律運転など、多くの産業で広く利用されている。
これまでの研究では、入力データと外部環境が常に変化しているため、DNNモデルの高精度さは、高いロバスト性を示すものではなかった。
論文 参考訳(メタデータ) (2022-11-18T03:32:53Z) - Rethinking Cost-sensitive Classification in Deep Learning via
Adversarial Data Augmentation [4.479834103607382]
コストに敏感な分類は、誤分類エラーがコストで大きく異なるアプリケーションにおいて重要である。
本稿では,過度パラメータ化モデルにコスト感受性を持たせるために,コスト依存型逆データ拡張フレームワークを提案する。
提案手法は,全体のコストを効果的に最小化し,臨界誤差を低減するとともに,全体的な精度で同等の性能を達成できる。
論文 参考訳(メタデータ) (2022-08-24T19:00:30Z) - RoMA: Robust Model Adaptation for Offline Model-based Optimization [115.02677045518692]
入力出力クエリの静的データセットからブラックボックス目的関数を最大化する入力を探索する問題を考える。
この問題を解決するための一般的なアプローチは、真の客観的関数を近似するプロキシモデルを維持することである。
ここでの大きな課題は、検索中に逆最適化された入力を避ける方法である。
論文 参考訳(メタデータ) (2021-10-27T05:37:12Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
本稿では,予測の多様性を奨励することで,ニューラルネットワークの効果的なアンサンブルを生成する問題をターゲットにする。
そこで本研究では,潜伏変数の学習における逆損失の多様性を明示的に最適化し,マルチモーダルデータのモデリングに必要な出力予測の多様性を得る。
最も競争力のあるベースラインと比較して、データ分布の変化の下で、分類精度が大幅に向上した。
論文 参考訳(メタデータ) (2020-03-10T03:10:41Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
本稿では,1回のフォワードパスで,テスト時に分布データポイントの発見と拒否が可能な決定論的ディープモデルを訓練する手法を提案する。
我々は,新しい損失関数とセントロイド更新方式を用いて,これらをスケールトレーニングし,ソフトマックスモデルの精度に適合させる。
論文 参考訳(メタデータ) (2020-03-04T12:27:36Z) - FlexiBO: A Decoupled Cost-Aware Multi-Objective Optimization Approach
for Deep Neural Networks [4.596221278839825]
我々は,FlexiBO(Flexible Multi-Objective Bayesian Optimization)と呼ばれる新しい多目的最適化アルゴリズムを開発し,この問題に対処する。
我々は、画像認識、自然言語処理(NLP)、音声からテキストへの翻訳のための7つの最先端DNN上でFlexiBOを評価する。
論文 参考訳(メタデータ) (2020-01-18T03:26:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。